

EXHIBIT 3

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 1 of 117 PageID #: 63

EXHIBIT 3

1

Claim Chart U.S. Patent No. 11,196,566 (the “’566 Patent”) Coinbase
Claim 1 Coinbase Products & Services

Payment of block rewards to new Validator Nodes under Proof of
Stake

A computing device for processing a
transaction between a first client
device, and a second client device via
a transfer mechanism, the transfer
mechanism comprising a decentralized
digital currency, the computing device
comprising:

The Computing Device | Facilitator includes:
• the Coinbase (Owned, managed) Ethereum Validator Full

Nodes; and
• the Coinbase (Owned, managed) Ethereum supporting

Archive Nodes and Light Nodes; and

Client Device
The First Client is an active Coinbase (Owned, managed) Ethereum
Validator Full Nodes. The Computing Device and the First Client are
the same device.
The Second Client is a prospective Validator Node, which will include
any prospective Coinbase (Owned, managed) Ethereum Validator
Nodes.

The Coinbase (Owned, managed) Ethereum Validator Nodes facilitates
value transfer to newly activated Validator Nodes (as Second Client)
based on work performed in producing blocks securely. The Beacon
Chain upgrade brings proof-of-stake consensus to Ethereum. For this,
active participants - known as validators – are required to propose,
verify, and vouch for the validity of blocks.

The Patent allows for, and the Claims do not prevent, the Computing
Device from being, or including, the First Client or Second Client. This
is detailed in the Patent description [0055].

FIG. 1 (see Figure 16) depicts a typical embodiment for practicing the
invention—especially for use with a distributed transfer mechanism—
where the clients, transfer mechanism, facilitator, and data source are
distinct participants. However, the depicted arrangement is not the only
one contemplated by the invention. In an alternate embodiment, the
facilitator provides some or all aspects of the transfer mechanism. In
another embodiment, the facilitator comprises some or all aspects of a
client. For example, part or all of a client's data store, the ability to
initiate or accept offers, etc., could be “embedded” in the facilitator,
thereby enabling the facilitator to operate as a client itself (e.g., one
controlled by the owners of the facilitator, or on behalf of a third party
who has entrusted control to the facilitator). In yet another
embodiment, the facilitator comprises the data source. Many
configurations are contemplated by the invention are possible, and will
become apparent to one skilled in the art.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 2 of 117 PageID #: 64

EXHIBIT 3

2

• a memory for storing a first

asymmetric key pair, the first
asymmetric key pair comprising
a first private key and a first
public key;

The First Client is an active Coinbase (Owned, managed) Ethereum
Validator Full Nodes. The Computing Device and the First Client are
the same device.
These consist of a computer hardware/software combination to run,
namely:

• Memory (RAM), used in the computing device (such as a
computer, server or server cloud instance).

• Transaction record sector (stores transactions and data that
haven't been submitted to the blockchain yet)

• a first key pair sector which is generated and stored on the
device (typically)

• The asymmetric key pair generated and/or stored consists of
a first private key and a first public key and is stored on the
device (typically)

Recommended hardware requirements for running a node.
https://launchpad.ethereum.org/en/checklist

A description of the Validator Node’s keys is described in the following
link.
https://kb.beaconcha.in/ethereum-2-keys

The validator signing key consists of two elements:

1. Validator private key
2. Validator public key

The purpose of the validator private key is to actively sign on-chain
(ETH2) operations such as block proposals and attestations. Therefore,
these keys have to be held in a hot wallet.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 3 of 117 PageID #: 65

https://launchpad.ethereum.org/en/checklist
https://kb.beaconcha.in/ethereum-2-keys

EXHIBIT 3

3

Example Validator Client (Prysmatic) installation guide shows key
management.
https://docs.prylabs.network/docs/install/install-with-script/

• a network interface for
receiving terms, the terms
comprising:

The First Client is an active Coinbase (Owned, managed) Ethereum
Validator Full Nodes. The Computing Device and the First Client are
the same device.
The Ethereum Network requires network connectivity in order to
achieve PoS consensus.
https://launchpad.ethereum.org/en/checklist
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#broadcast-attestation
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#broadcast-aggregate

o at least one of a first principal
data or a second principal
data;

First principle data
The initial deposit staking amount to participate as an Eth2 Validator in
the Ethereum Network.

The Beacon Chain upgrade brings proof-of-stake consensus to
Ethereum. For this, we need active participants - known as validators -
to propose, verify, and vouch for the validity of blocks. In exchange,
honest validators receive financial rewards. Importantly, as a validator
you'll need to post ETH as collateral - in other words, have some funds
at stake. The only way to become a validator is to make a one-way ETH
transaction to the deposit contract on the current Ethereum chain.

https://launchpad.ethereum.org/en/overview

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/beacon-chain.md#deposits

o a reference to at least one of a
first data source or a second
data source; and

First data source
The Beacon Chain reward and penalty algorithm.

https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-
20-phase-0/

https://kb.beaconcha.in/rewards-and-penalties#block-reward

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/beacon-chain.md#attestations

o an expiration timestamp; At the beginning of each epoch (every 32 slots, except GENESIS),
several things happen, including

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 4 of 117 PageID #: 66

https://docs.prylabs.network/docs/install/install-with-script/
https://launchpad.ethereum.org/en/checklist
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#broadcast-attestation
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#broadcast-attestation
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#broadcast-aggregate
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#broadcast-aggregate
https://launchpad.ethereum.org/en/overview
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#deposits
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#deposits
https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-20-phase-0/
https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-20-phase-0/
https://kb.beaconcha.in/rewards-and-penalties#block-reward
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#attestations
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#attestations

EXHIBIT 3

4

• Justification and finalization of the chain
• Assignment of rewards and penalties to attesters
• Update of the validator registry
• The special slashing penalty (see above), and
• Some final updates (computing effective balances, resets, etc)

https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-
20-phase-0/

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/beacon-chain.md#epoch-processing

• a computer processor coupled
to the memory and the network
interface, the computer
processor configured to:

The First Client is an active Coinbase (Owned, managed) Ethereum
Validator Full Nodes. The Computing Device and the First Client are
the same device.
These consist of a computer hardware/software combination to run.

• read the first private key
from the memory;

The active Coinbase (Owned, managed) Ethereum Validator Full
Nodes is expected to propose a SignedBeaconBlock at the beginning of
any slot during which is_proposer(state, validator_index) returns True.
To propose, the validator selects the BeaconBlock, parent, that in their
view of the fork choice is the head of the chain during slot - 1. The
validator creates, signs, and broadcasts a block that is a child of parent
that satisfies a valid beacon chain state transition.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#block-proposal

Preparing for a BeaconBlock
To construct a BeaconBlockBody, a block (BeaconBlock) is defined
with the necessary context for a block proposal:

Slot
Set block.slot = slot where slot is the current slot at which the validator
has been selected to propose. The parent selected must satisfy that
parent.slot < block.slot.
Note: There might be "skipped" slots between the parent and block.
These skipped slots are processed in the state transition function
without per-block processing.

Proposer index
Set block.proposer_index = validator_index where validator_index is
the validator chosen to propose at this slot. The private key mapping to
state.validators[validator_index].pubkey is used to sign the block.

BLS public key
Validator public keys are G1 points on the BLS12-381 curve. A private
key, privkey, must be securely generated along with the resultant
pubkey. This privkey must be "hot", that is, constantly available to sign
data throughout the lifetime of the validator.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 5 of 117 PageID #: 67

https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-20-phase-0/
https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-20-phase-0/
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#epoch-processing
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#epoch-processing
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#bls-signatures
https://z.cash/blog/new-snark-curve

EXHIBIT 3

5

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#bls-public-key

• compute a first cryptographic
signature from the first private
key;

The active Coinbase (Owned, managed) Ethereum Validator Full
Nodes is expected to propose a SignedBeaconBlock at the beginning of
any slot during which is_proposer(state, validator_index) returns True.
To propose, the validator selects the BeaconBlock, parent, that in their
view of the fork choice is the head of the chain during slot - 1. The
validator creates, signs, and broadcasts a block that is a child of parent
that satisfies a valid beacon chain state transition.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#block-proposal

Preparing for a BeaconBlock
To construct a BeaconBlockBody, a block (BeaconBlock) is defined
with the necessary context for a block proposal:

Slot
Set block.slot = slot where slot is the current slot at which the validator
has been selected to propose. The parent selected must satisfy that
parent.slot < block.slot.
Note: There might be "skipped" slots between the parent and block.
These skipped slots are processed in the state transition function
without per-block processing.

Proposer index
Set block.proposer_index = validator_index where validator_index is
the validator chosen to propose at this slot. The private key mapping to
state.validators[validator_index].pubkey is used to sign the block.

• create an inchoate data record
comprising:

The SignedBeaconBlock, as produced by the Validator (as the block
producer), containing the deposit of a prospective Validator that is yet
to be added to the list of registered Validators.

• a commit input for receiving
a commit data from a
commit transaction;

The 32ETH deposit stake to instantiate an Eth2 Validator.

• one or more output data
obtained from at least one of
the first principal data or
the second principal data,
and a value data from at
least one of the first data

The prospective Validator’s reward or penalty. This is implied as these
are rules of the network.

The Beacon Chain reward and penalty algorithm uses predefined values
and formulas, along with the effective staking balance of the
participating nodes to calculate the reward or penalty for the Validators.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 6 of 117 PageID #: 68

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#bls-public-key
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#bls-public-key
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal

EXHIBIT 3

6

source or the second data
source; and

https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-
20-phase-0/

https://kb.beaconcha.in/rewards-and-penalties#block-reward

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/beacon-chain.md#attestations

• the first cryptographic
signature; and

The Validator (as the block producer) is expected to propose a
SignedBeaconBlock at the beginning of any slot during which
is_proposer(state, validator_index) returns True. To propose, the
validator selects the BeaconBlock, parent, that in their view of the fork
choice is the head of the chain during slot - 1. The validator creates,
signs, and broadcasts a block that is a child of parent that satisfies a
valid beacon chain state transition.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#block-proposal

Note that the signed block includes the Eth1 data containing the 32ETH
deposit stake to instantiate a Validator.

Eth1 Data
The block.body.eth1_data field is for block proposers to vote on recent
Eth1 data. This recent data contains an Eth1 block hash as well as the
associated deposit root (as calculated by the get_deposit_root() method
of the deposit contract) and deposit count after execution of the
corresponding Eth1 block. If over half of the block proposers in the
current Eth1 voting period vote for the same eth1_data then
state.eth1_data updates immediately allowing new deposits to be
processed. Each deposit in block.body.deposits must verify against
state.eth1_data.eth1_deposit_root.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#eth1-data

• publish the inchoate data
record to at least one of the first
client device or the second
client device,

As the Computing Device and the First Client are the same device
(Coinbase (Owned, managed) Ethereum Validator Node), the inchoate
data record is already known by the First Client. As such the inchoate
data record is considered to be published to the First Client on creation
of the inchoate data record by the Validator Node.

A validator is expected to propose a SignedBeaconBlock at the
beginning of any slot during which is_proposer(state, validator_index)
returns True. To propose, the validator selects the BeaconBlock,
parent, that in their view of the fork choice is the head of the chain

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 7 of 117 PageID #: 69

https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-20-phase-0/
https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-20-phase-0/
https://kb.beaconcha.in/rewards-and-penalties#block-reward
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#attestations
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#attestations
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#eth1-data
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#eth1-data
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#signedbeaconblock

EXHIBIT 3

7

during slot - 1. The validator creates, signs, and broadcasts a block
that is a child of parent that satisfies a valid beacon chain state
transition.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#block-proposal

wherein the decentralized digital
currency comprises a distributed
ledger that enables processing the
transaction between the first client
device and the second client device
without the need for a trusted central
authority,

Ether is used as the decentralised currency. The Ethereum network
maintains a distributed ledger without the need for a trusted central
authority.

From the Ethereum yellow paper.
2.1. Value. In order to incentivise computation within the network,
there needs to be an agreed method for transmitting value. To address
this issue, Ethereum has an intrinsic currency, Ether, known also as
ETH and sometimes referred to by the Old English ¯D.

https://ethereum.github.io/yellowpaper/paper.pdf

wherein at least one of the first client
device or the second client device
signs the inchoate data record and
saves a copy of the inchoate data
record on at least one of the first client
device or the second client device; and

As the Computing Device and the First Client are the same device
(Coinbase (Owned, managed) Ethereum Validator Node), the inchoate
data record is already signed by the First Client. The signed inchoate
data record (as a complete data record) is broadcast and recorded on the
Ethereum Network.

A validator is expected to propose a SignedBeaconBlock at the
beginning of any slot during which is_proposer(state, validator_index)
returns True. To propose, the validator selects the BeaconBlock,
parent, that in their view of the fork choice is the head of the chain
during slot - 1. The validator creates, signs, and broadcasts a block
that is a child of parent that satisfies a valid beacon chain state
transition.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#block-proposal

wherein the inchoate data record is
used by at least one of the first client
device or the second client device to
create a complete data record and to
create the transaction by broadcasting
the complete data record for
transmitting and receiving among
network participants in the computer
network for recording in the
distributed ledger,

As the Computing Device and the First Client are the same device
(Coinbase (Owned, managed) Ethereum Validator Node), the inchoate
data record is already signed by the First Client. The signed inchoate
data record (as a complete data record) is broadcast and recorded on the
Ethereum Network.

The SignedBeaconBlock, in order to achieve consensus, is required to
be signed by the Ethereum Network as the First Client (the Eth2
Validators) as either the Block Producer, Attester or Aggregator’s.

Proposer index

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 8 of 117 PageID #: 70

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beacon-chain-state-transition-function
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beacon-chain-state-transition-function
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#signedbeaconblock
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beacon-chain-state-transition-function
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beacon-chain-state-transition-function
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal

EXHIBIT 3

8

Set block.proposer_index = validator_index where validator_index is
the validator chosen to propose at this slot. The private key mapping to
state.validators[validator_index].pubkey is used to sign the block.
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#proposer-index

Attesting
A validator is expected to create, sign, and broadcast an attestation
during each epoch. The committee, assigned index, and assigned slot
for which the validator performs this role during an epoch are defined
by get_committee_assignment(state, epoch, validator_index).
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#attesting

Construct aggregate
If the validator is selected to aggregate (is_aggregator()), they
construct an aggregate attestation via the following.
Collect attestations seen via gossip during the slot that have an
equivalent attestation_data to that constructed by the validator. If
len(attestations) > 0, create an aggregate_attestation: Attestation with
the following fields.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#construct-attestation

def get_aggregate_signature(attestations: Sequence[Attestation]) ->
BLSSignature:
 signatures = [attestation.signature for attestation in attestations]
 return bls.Aggregate(signatures)

The Coinbase (Owned, managed) Ethereum Validator Node uses the
SignedBeaconBlock (as a complete data record) along with the
broadcasted Aggregated Attestations to update its record of the Beacon
Chain. Finality is achieved if two epochs in a row are justified.

ETH2 uses Casper Proof of Stake, specifically, something called a
“finality gadget”. The ETH2 finality process is defined as follows:

1. If > 2/3rds of validators vote correctly on the chain head
during an epoch, we call the last epoch justified

2. If two epochs in a row are justified, the current_epoch - 2 is
considered finalized

https://hackmd.io/@prysmaticlabs/finality#How-Finality-Works-in-
ETH2

The Coinbase (Owned, managed) Ethereum Validator Node as the First
Client process the Beacon Block and records the new Validator in the

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 9 of 117 PageID #: 71

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#proposer-index
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#proposer-index
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#construct-attestation
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#construct-attestation
https://hackmd.io/@prysmaticlabs/finality#How-Finality-Works-in-ETH2
https://hackmd.io/@prysmaticlabs/finality#How-Finality-Works-in-ETH2

EXHIBIT 3

9

Registry on identifying a new deposit in the Deposit Contract. The
Beacon Block is saved by each Eth2 Client.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/beacon-chain.md#deposits

wherein the at least one of the
computing device, the first client
device, or the second client device
verifies the recording of the complete
data record in the distributed ledger
by observing an external state.

The new Validator Node, as the Second Client, can view the status of
its activation from https://beaconcha.in/

Once a deposit is made to the Ethereum Beacon Chain, it will join a
waiting queue before joining the network.
All Ethereum 2.0 deposits have two delays before going into the waiting
queue:

1. Eth1 data inclusion delay: The Beacon Chain follows Eth1
with some delay to make sure the Eth1 data is finalized.

2. Eth1 data voting delay: The Beacon Chain validators vote on
the deposits to process every 4 hours.

You can check more details about your validator, including the
estimated time to join the network, at https://beaconcha.in/.

https://intercom.help/stakefish/en/articles/4799068-when-will-my-
validator-join-the-network-and-be-activated

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 10 of 117 PageID #: 72

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#deposits
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#deposits
https://beaconcha.in/
https://beaconcha.in/
https://intercom.help/stakefish/en/articles/4799068-when-will-my-validator-join-the-network-and-be-activated
https://intercom.help/stakefish/en/articles/4799068-when-will-my-validator-join-the-network-and-be-activated

EXHIBIT 3

10

Claim Chart U.S. Patent No. 11,196,566 (the “’566 Patent”) Coinbase
Claim 2 Coinbase Products & Services

Payment of block rewards to new Validator Nodes under Proof of
Stake

The device of claim 1, where:
the computer processor is configured
to obtain the one or more output data
based on:

The Computing Device | Facilitator consists of:
• the Coinbase (Owned, managed) Ethereum Validator Full

Nodes; and
• the Coinbase (Owned, managed) Ethereum supporting

Archive Nodes and Light Nodes; and

Client Device
The First Client is the active Coinbase (Owned, managed) Ethereum
Validator Full Nodes. The Computing Device and the First Client are the
same device.
The Second Client is the newly activated Validator Node, which will
include any prospective Coinbase (Owned, managed or offered)
Ethereum Validator Nodes.

The Coinbase (Owned, managed) Ethereum Validator Nodes facilitates
value transfer to newly activated Validator Nodes (as Second Client)
based on work performed in producing blocks securely. The Beacon
Chain upgrade brings proof-of-stake consensus to Ethereum. For this,
active participants - known as validators – are required to propose,
verify, and vouch for the validity of blocks.

the first principal data; and
the value data from the first data
source.

The Coinbase (Owned, managed) Ethereum Validator Full Nodes
processes the validator rewards at the end of each epoch. This is
calculated from the Beacon Chain reward and penalty algorithm (Data
Source) and considers the staked principle.

https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-
20-phase-0/

https://kb.beaconcha.in/rewards-and-penalties#block-reward

Each Validator account is updated with the reward/penalty. The Beacon
Block is updated accordingly.

def process_rewards_and_penalties(state: BeaconState) -> None:
 # No rewards are applied at the end of `GENESIS_EPOCH` because
rewards are for work done in the previous epoch
 if get_current_epoch(state) == GENESIS_EPOCH:
 return

 rewards, penalties = get_attestation_deltas(state)
 for index in range(len(state.validators)):
 increase_balance(state, ValidatorIndex(index), rewards[index])

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 11 of 117 PageID #: 73

https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-20-phase-0/
https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-20-phase-0/
https://kb.beaconcha.in/rewards-and-penalties#block-reward

EXHIBIT 3

11

 decrease_balance(state, ValidatorIndex(index), penalties[index])

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/beacon-
chain.md#process_rewards_and_penalties

def process_slashings(state: BeaconState) -> None:
 epoch = get_current_epoch(state)
 total_balance = get_total_active_balance(state)
 adjusted_total_slashing_balance = min(sum(state.slashings) *
PROPORTIONAL_SLASHING_MULTIPLIER, total_balance)
 for index, validator in enumerate(state.validators):
 if validator.slashed and epoch +
EPOCHS_PER_SLASHINGS_VECTOR // 2 ==
validator.withdrawable_epoch:
 increment = EFFECTIVE_BALANCE_INCREMENT #
Factored out from penalty numerator to avoid uint64 overflow
 penalty_numerator = validator.effective_balance // increment *
adjusted_total_slashing_balance
 penalty = penalty_numerator // total_balance * increment
 decrease_balance(state, ValidatorIndex(index), penalty)

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/beacon-chain.md#slashings

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 12 of 117 PageID #: 74

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#process_rewards_and_penalties
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#process_rewards_and_penalties
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#process_rewards_and_penalties
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#slashings
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#slashings

EXHIBIT 3

12

Claim Chart U.S. Patent No. 11,196,566 (the “’566 Patent”) Coinbase

Claim 3 Coinbase Products & Services
Payment of block rewards to new Validator Nodes under Proof of Stake

The device of claim 1,
where the computer
processor is further
configured to:

The Computing Device | Facilitator consists of:
• the Coinbase (Owned, managed) Ethereum Validator Full Nodes; and
• the Coinbase (Owned, managed) Ethereum supporting Archive Nodes and

Light Nodes; and

Client Device
The First Client is the active Coinbase (Owned, managed) Ethereum Validator Full
Nodes. The Computing Device and the First Client are the same device.
The Second Client is the newly activated Validator Node, which will include any
prospective Coinbase (Owned, managed) Ethereum Validator Nodes.

The Coinbase (Owned, managed) Ethereum Validator Nodes facilitates value transfer to
newly activated Validator Nodes (as Second Client) based on work performed in
producing blocks securely. The Beacon Chain upgrade brings proof-of-stake consensus
to Ethereum. For this, active participants - known as validators – are required to propose,
verify, and vouch for the validity of blocks.

compute a second
cryptographic
signature from the
first private key;

The Voluntary Exit is initiated and signed from the Validator Nodes Client CLI.

Teku Client
teku voluntary-exit --validator-keys=<KEY_DIR>:<PASS_DIR> |
<KEY_FILE>:<PASS_FILE>[,<KEY_DIR>:<PASS_DIR> |
<KEY_FILE>:<PASS_FILE>...]…
https://docs.teku.consensys.net/en/latest/Reference/CLI/Subcommands/Voluntary-Exit/

Lighthouse Client
In order to initiate an exit, users can use the lighthouse account validator exit command.

 The --keystore flag is used to specify the path to the EIP-2335 voting keystore
for the validator.

 The --beacon-node flag is used to specify a beacon chain HTTP endpoint that
confirms to the Eth2.0 Standard Beacon Node API specifications. That beacon
node will be used to validate and propagate the voluntary exit. The default
value for this flag is http://localhost:5052.

 The --network flag is used to specify a particular Eth2 network (default is
mainnet).

 The --password-file flag is used to specify the path to the file containing the
password for the voting keystore. If this flag is not provided, the user will be
prompted to enter the password.

After validating the password, the user will be prompted to enter a special exit phrase as
a final confirmation after which the voluntary exit will be published to the beacon chain.

https://lighthouse-book.sigmaprime.io/voluntary-exit.html

create an another
inchoate data
record comprising:

A Signed Voluntary Exit message is created.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 13 of 117 PageID #: 75

https://docs.teku.consensys.net/en/latest/Reference/CLI/Subcommands/Voluntary-Exit/
https://ethereum.github.io/beacon-APIs/
http://localhost:5052/
https://lighthouse-book.sigmaprime.io/voluntary-exit.html

EXHIBIT 3

13

Claim Chart U.S. Patent No. 11,196,566 (the “’566 Patent”) Coinbase
Claim 3 Coinbase Products & Services

Payment of block rewards to new Validator Nodes under Proof of Stake
a commit input for
receiving the
commit data from
the commit
transaction;

The Voluntary Exit is initiated and signed from the Validator Client.

Teku Client
teku voluntary-exit --validator-keys=<KEY_DIR>:<PASS_DIR> |
<KEY_FILE>:<PASS_FILE>[,<KEY_DIR>:<PASS_DIR> |
<KEY_FILE>:<PASS_FILE>...]…
https://docs.teku.consensys.net/en/latest/Reference/CLI/Subcommands/Voluntary-Exit/

Lighthouse Client
In order to initiate an exit, users can use the lighthouse account validator exit command.

 The --keystore flag is used to specify the path to the EIP-2335 voting keystore
for the validator.

 The --beacon-node flag is used to specify a beacon chain HTTP endpoint that
confirms to the Eth2.0 Standard Beacon Node API specifications. That beacon
node will be used to validate and propagate the voluntary exit. The default
value for this flag is http://localhost:5052.

 The --network flag is used to specify a particular Eth2 network (default is
mainnet).

 The --password-file flag is used to specify the path to the file containing the
password for the voting keystore. If this flag is not provided, the user will be
prompted to enter the password.

After validating the password, the user will be prompted to enter a special exit phrase as
a final confirmation after which the voluntary exit will be published to the beacon chain.

https://lighthouse-book.sigmaprime.io/voluntary-exit.html

a refund output
comprising a
refund data;

The Voluntary Exit message contains a reference to the ValidatorIndex which is a
pointer to the account. The refund output is the account balance.

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-
chain.md#voluntary-exits

def process_voluntary_exit(state: BeaconState, signed_voluntary_exit:
SignedVoluntaryExit) -> None:
 voluntary_exit = signed_voluntary_exit.message
 validator = state.validators[voluntary_exit.validator_index]
 # Verify the validator is active
 assert is_active_validator(validator, get_current_epoch(state))
 # Verify exit has not been initiated
 assert validator.exit_epoch == FAR_FUTURE_EPOCH
 # Exits must specify an epoch when they become valid; they are not valid before then
 assert get_current_epoch(state) >= voluntary_exit.epoch
 # Verify the validator has been active long enough
 assert get_current_epoch(state) >= validator.activation_epoch +
SHARD_COMMITTEE_PERIOD
 # Verify signature
 domain = get_domain(state, DOMAIN_VOLUNTARY_EXIT, voluntary_exit.epoch)
 signing_root = compute_signing_root(voluntary_exit, domain)
 assert bls.Verify(validator.pubkey, signing_root, signed_voluntary_exit.signature)

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 14 of 117 PageID #: 76

https://docs.teku.consensys.net/en/latest/Reference/CLI/Subcommands/Voluntary-Exit/
https://ethereum.github.io/beacon-APIs/
http://localhost:5052/
https://lighthouse-book.sigmaprime.io/voluntary-exit.html
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#voluntary-exits
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#voluntary-exits

EXHIBIT 3

14

Claim Chart U.S. Patent No. 11,196,566 (the “’566 Patent”) Coinbase
Claim 3 Coinbase Products & Services

Payment of block rewards to new Validator Nodes under Proof of Stake
 # Initiate exit
 initiate_validator_exit(state, voluntary_exit.validator_index)

the second
cryptographic
signature; and

The Signed Voluntary Exit message contains the signature from the Validator.

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-
chain.md#signedvoluntaryexit

class SignedVoluntaryExit(Container): message: VoluntaryExit signature:
BLSSignature

a lock time; and One of the main design decisions of the Ethereum 2 project is performing the roll-out of
the system over several phases. This decision has a serious impact on voluntary exits.
Even though validators are able to perform an exit in Phase 0 and Phase 1, they will have
to wait until Phase 2 to be able to withdraw. This means their staked funds will be frozen
until withdrawals are available, which should be around 2 years after Mainnet launch.

https://docs.prylabs.network/docs/wallet/exiting-a-validator/

publish the another
inchoate data
record to at least
one of the first client
device or the second
client device.

As the Computing Device and the First Client are the same device (Coinbase Ethereum
Validator Node), the inchoate data record is already signed by the First Client. As such
the inchoate data record is considered to be published to the First Client on creation of
the inchoate data record by the Validator Node.

The signed inchoate data record (as a complete data record) is broadcast and recorded on
the Ethereum Network.
The following is an example output message from the Lighthouse Client.

Successfully published voluntary exit for validator 0xabcd Voluntary exit has been
accepted into the beacon chain, but not yet finalized. Finalization may take several
minutes or longer. Before finalization there is a low probability that the exit may be
reverted. Current epoch: 29946, Exit epoch: 29951, Withdrawable epoch: 30207 Please
keep your validator running till exit epoch Exit epoch in approximately 1920 secs.

https://lighthouse-book.sigmaprime.io/voluntary-exit.html

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 15 of 117 PageID #: 77

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#signedvoluntaryexit
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#signedvoluntaryexit
https://docs.prylabs.network/docs/wallet/exiting-a-validator/
https://lighthouse-book.sigmaprime.io/voluntary-exit.html

EXHIBIT 3

15

Claim Chart U.S. Patent No. 11,196,566 (the “’566 Patent”) Coinbase
Claim 7
A system for processing a transaction
between a first client device and a
second client device via a transfer
mechanism the system comprising a
computing device, the first client
device, the second client device, and
the transfer mechanism.

Coinbase Products & Services
Payment of block rewards to new Validator Nodes under
Proof of Stake

7. a. the computing device comprising:
i. a first memory comprising

for storing a first
asymmetric key pair, the
first asymmetric key pair
comprising a first private
key and a first public key;

The Computing Device | Facilitator consists of:
• the Coinbase (Owned, managed) Ethereum Validator Full

Nodes; and
• the Coinbase (Owned, managed) Ethereum supporting

Archive Nodes and Light Nodes; and

Client Device
The First Client is an active Coinbase (Owned, managed) Ethereum
Validator Full Nodes. The Computing Device and the First Client are
the same device.

These consist of a computer hardware/software combination to run,
namely:

• Memory (RAM), used in the computing device (such as a
computer, server or server cloud instance).

• Transaction record sector (stores transactions and data that
haven't been submitted to the blockchain yet)

• a first key pair sector which is generated and stored on the
device (typically)

• The asymmetric key pair generated and/or stored consists of
a first private key and a first public key and is stored on the
Eth Node

Recommended hardware requirements for running a node.
https://launchpad.ethereum.org/en/checklist

A description of the Validator’s Node keys is described in the following
link.
https://kb.beaconcha.in/ethereum-2-keys

The validator signing key consists of two elements:

1. Validator private key
2. Validator public key

The purpose of the validator private key is to actively sign on-chain
(ETH2) operations such as block proposals and attestations. Therefore,
these keys have to be held in a hot wallet.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 16 of 117 PageID #: 78

https://launchpad.ethereum.org/en/checklist
https://kb.beaconcha.in/ethereum-2-keys

EXHIBIT 3

16

Example Validator Client (Prysmatic) installation guide shows key
management.
https://docs.prylabs.network/docs/install/install-with-script/

ii. a first network interface for
receiving terms, the terms
comprising.

The First Client is an active Coinbase (Owned, Managed) Ethereum
Validator Full Nodes. The Computing Device and the First Client are
the same device.
The Ethereum Network requires network connectivity in order to
achieve PoS consensus.

https://launchpad.ethereum.org/en/checklist
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#broadcast-attestation
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#broadcast-aggregate

A. At least one of a first
principal data or second
principle data;

First principle data
The initial deposit staking amount to participate as a Eth2 Validator in
the Ethereum Network.

The Beacon Chain upgrade brings proof-of-stake consensus to
Ethereum. For this, we need active participants - known as validators -
to propose, verify, and vouch for the validity of blocks. In exchange,
honest validators receive financial rewards. Importantly, as a validator
you'll need to post ETH as collateral - in other words, have some funds
at stake. The only way to become a validator is to make a one-way ETH
transaction to the deposit contract on the current Ethereum chain.

https://launchpad.ethereum.org/en/overview

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/beacon-chain.md#deposits

B. a reference to at least one of
a first data source or a
second data source; and

First data source
The Beacon Chain reward and penalty algorithm.

https://consensys.net/blog/codefi/rewards-and-penalties-on-
ethereum-20-phase-0/

https://kb.beaconcha.in/rewards-and-penalties#block-reward

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/beacon-chain.md#attestations

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 17 of 117 PageID #: 79

https://docs.prylabs.network/docs/install/install-with-script/
https://launchpad.ethereum.org/en/checklist
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#broadcast-attestation
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#broadcast-attestation
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#broadcast-aggregate
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#broadcast-aggregate
https://launchpad.ethereum.org/en/overview
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#deposits
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#deposits
https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-20-phase-0/
https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-20-phase-0/
https://kb.beaconcha.in/rewards-and-penalties#block-reward
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#attestations
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#attestations

EXHIBIT 3

17

C. an expiration timestamp, At the beginning of each epoch (every 32 slots, except GENESIS),
several things happen, including:

• Justification and finalization of the chain
• Assignment of rewards and penalties to attesters
• Update of the validator registry
• The special slashing penalty (see above), and
• Some final updates (computing effective balances, resets, etc)

https://consensys.net/blog/codefi/rewards-and-penalties-on-
ethereum-20-phase-0/

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/beacon-chain.md#epoch-
processing

iii. a first computer processor
coupled to the first memory and
the first network interface, the
first computer processor
configured to:

The First Client is an active Coinbase (Owned, Managed) Ethereum
Validator Full Nodes. The Computing Device and the First Client are
the same device.
These consist of a computer hardware/software combination to run.

A. read the first private key from
the first memory;

The Ethereum Validator Full Node is expected to propose a
SignedBeaconBlock at the beginning of any slot during which
is_proposer(state, validator_index) returns True. To propose, the
validator selects the BeaconBlock, parent, that in their view of the fork
choice is the head of the chain during slot - 1. The validator creates,
signs, and broadcasts a block that is a child of parent that satisfies a
valid beacon chain state transition.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#block-proposal

Preparing for a BeaconBlock
To construct a BeaconBlockBody, a block (BeaconBlock) is defined
with the necessary context for a block proposal:

Slot
Set block.slot = slot where slot is the current slot at which the validator
has been selected to propose. The parent selected must satisfy that
parent.slot < block.slot.
Note: There might be "skipped" slots between the parent and block.
These skipped slots are processed in the state transition function
without per-block processing.

Proposer index
Set block.proposer_index = validator_index where validator_index is
the validator chosen to propose at this slot. The private key mapping to
state.validators[validator_index].pubkey is used to sign the block.

BLS public key
Validator public keys are G1 points on the BLS12-381 curve. A
private key, privkey, must be securely generated along with the

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 18 of 117 PageID #: 80

https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-20-phase-0/
https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-20-phase-0/
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#epoch-processing
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#epoch-processing
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#epoch-processing
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#bls-signatures
https://z.cash/blog/new-snark-curve

EXHIBIT 3

18

resultant pubkey. This privkey must be "hot", that is, constantly
available to sign data throughout the lifetime of the validator.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#bls-public-key

B. compute a first cryptographic
signature from the first private
key;

The Ethereum Validator Full Node is expected to propose a
SignedBeaconBlock at the beginning of any slot during which
is_proposer(state, validator_index) returns True. To propose, the
validator selects the BeaconBlock, parent, that in their view of the fork
choice is the head of the chain during slot - 1. The validator creates,
signs, and broadcasts a block that is a child of parent that satisfies a
valid beacon chain state transition.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#block-proposal

Preparing for a BeaconBlock
To construct a BeaconBlockBody, a block (BeaconBlock) is defined
with the necessary context for a block proposal:

Slot
Set block.slot = slot where slot is the current slot at which the validator
has been selected to propose. The parent selected must satisfy that
parent.slot < block.slot.
Note: There might be "skipped" slots between the parent and block.
These skipped slots are processed in the state transition function
without per-block processing.

Proposer index
Set block.proposer_index = validator_index where validator_index is
the validator chosen to propose at this slot. The private key mapping to
state.validators[validator_index].pubkey is used to sign the block.

C. create an inchoate data record

comprising:

The SignedBeaconBlock, as produced by the Ethereum Network’s
Validator, containing the deposit of a prospective Validator that is yet
to be added to the list of registered Validators.

a. a commit input for receiving
a commit data from a
commit transaction;

The 32ETH deposit stake required to instantiate a prospective Eth2
Validator.

b. one or more outputs
obtained from at least one of
the first principal data or the
second principal data, and a
value data from at least one

The prospective Validator’s reward or penalty. This is implied as these
are rules of the network.

The Beacon Chain reward and penalty algorithm uses predefined values
and formulas, along with the effective staking balance of the
participating nodes to calculate the reward or penalty for the Validators.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 19 of 117 PageID #: 81

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#bls-public-key
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#bls-public-key
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal

EXHIBIT 3

19

of the first data source or
the second data source; and

https://consensys.net/blog/codefi/rewards-and-penalties-on-
ethereum-20-phase-0/

https://kb.beaconcha.in/rewards-and-penalties#block-reward

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/beacon-chain.md#attestations

c. the first cryptographic
signature; and

The Ethereum Network Validator is expected to propose a
SignedBeaconBlock at the beginning of any slot during which
is_proposer(state, validator_index) returns True. To propose, the
validator selects the BeaconBlock, parent, that in their view of the fork
choice is the head of the chain during slot - 1. The validator creates,
signs, and broadcasts a block that is a child of parent that satisfies a
valid beacon chain state transition.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#block-proposal

Note that the signed block includes the Eth1 data containing the 32ETH
deposit stake to instantiate a Validator.

Eth1 Data
The block.body.eth1_data field is for block proposers to vote on recent
Eth1 data. This recent data contains an Eth1 block hash as well as the
associated deposit root (as calculated by the get_deposit_root() method
of the deposit contract) and deposit count after execution of the
corresponding Eth1 block. If over half of the block proposers in the
current Eth1 voting period vote for the same eth1_data then
state.eth1_data updates immediately allowing new deposits to be
processed. Each deposit in block.body.deposits must verify against
state.eth1_data.eth1_deposit_root.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#eth1-data

D. publish the inchoate data
record to at least one of the first
client device or the second
client device;

As the Computing Device and the First Client are the same device
(Coinbase (Owned, managed) Ethereum Validator Node), the inchoate
data record is already known by the First Client. As such the inchoate
data record is considered to be published to the First Client on creation
of the inchoate data record by the Validator Node.

A validator is expected to propose a SignedBeaconBlock at the
beginning of any slot during which is_proposer(state, validator_index)
returns True. To propose, the validator selects the BeaconBlock,

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 20 of 117 PageID #: 82

https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-20-phase-0/
https://consensys.net/blog/codefi/rewards-and-penalties-on-ethereum-20-phase-0/
https://kb.beaconcha.in/rewards-and-penalties#block-reward
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#attestations
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#attestations
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#eth1-data
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#eth1-data
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#signedbeaconblock

EXHIBIT 3

20

parent, that in their view of the fork choice is the head of the chain
during slot - 1. The validator creates, signs, and broadcasts a block
that is a child of parent that satisfies a valid beacon chain state
transition.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#block-proposal

7. b. the first client comprises:
i. a second memory for storing

a second asymmetric key
pair, the second asymmetric
key pair comprising a second
private key and a second
public key.

The Computing Device | Facilitator consists of:
• the Coinbase (Owned, managed) Ethereum Validator Full

Nodes; and
• the Coinbase (Owned, managed) Ethereum supporting

Archive Nodes and Light Nodes; and

Client Device
The First Client is an active Coinbase (Owned, managed) Ethereum
Validator Full Nodes.

The Facilitator and the First Client are the same device. Thus, the
clause is not assessable as it is covered by the above clauses 7a.i.

ii. a second network interface;
and

The Facilitator and the First Client are the same device. Thus, the
clause is not assessable as it is covered by the above clauses 7a.ii.

iii. a second computer processor
coupled to the second
memory and the second
network interface, the second
computer processor
configured to:

The Facilitator and the First Client are the same device. Thus, the
clause is not assessable as it is covered by the above clauses 7a.iii.A-E.

A. read the second private key
from the second key pair
sector;

The Facilitator and the First Client are the same device. Thus, the
clause is not assessable as it is covered by the above clauses 7a.iii.A.

B. read the inchoate
disbursement transaction
record,

The Facilitator and the First Client are both considered to be the same
device. Thus, the clause is not assessable.

C. compute a second
cryptographic signature
from the second private key

The Facilitator and the First Client are the same device. Thus, the
clause is not assessable as it is covered by the above clauses 7a.iii.B.

D. create a complete data
record comprising:
I. the commit input,

The Facilitator and the First Client are the same device. Thus, the
clause is not assessable as it is covered by the above clauses 7a.iii.C.

II. the output data, The Facilitator and the First Client are the same device. Thus, the
clause is not assessable as it is covered by the above clauses 7a.iii.C.

III. the first cryptographic
signature, and

The Facilitator and the First Client are the same device. Thus, the
clause is not assessable as it is covered by the above clauses 7a.iii.C.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 21 of 117 PageID #: 83

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beacon-chain-state-transition-function
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beacon-chain-state-transition-function
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal

EXHIBIT 3

21

IV. the second
cryptographic
signature,

The Facilitator and the First Client are the same device. Thus, the
clause is not assessable as it is covered by the above clauses 7a.iii.C.

E. create a transaction by
submitting the complete data
record to the transfer
mechanism.

The Facilitator and the First Client are the same device. Thus, the
clause is not assessable as it is covered by the above clauses 7a.iii.D.

7. c. the second client comprises:
i. a third memory for storing a

third asymmetric key pair, the
third asymmetric key pair
comprising a third private
key and a third public key.

The Second Client is a prospective Validator Node, which will include
any prospective Coinbase (Owned, managed, offered) Ethereum
Validator Nodes.

These consist of a computer hardware/software combination to run,
namely:

• Memory (RAM), used in the computing device (such as a
computer, server or server cloud instance).

• Transaction record sector (stores transactions and data that
haven't been submitted to the blockchain yet)

• a first key pair sector which is generated and stored on the
device (typically)

• The asymmetric key pair generated and/or stored consists of
a first private key and a first public key and is stored on the
device

Recommended hardware requirements for running a node.
https://launchpad.ethereum.org/en/checklist

A description of the Validator Node’s keys is described in the following
link.
https://kb.beaconcha.in/ethereum-2-keys

The validator signing key consists of two elements:

1. Validator private key
2. Validator public key

The purpose of the validator private key is to actively sign on-chain
(ETH2) operations such as block proposals and attestations. Therefore,
these keys have to be held in a hot wallet.

Example Validator Client (Prysmatic) installation guide shows key
management.
https://docs.prylabs.network/docs/install/install-with-script/

ii. a third network interface;
and

The newly activated Validator requires network connectivity in order to
contribute to PoS consensus.
https://launchpad.ethereum.org/en/checklist
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#block-proposal

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 22 of 117 PageID #: 84

https://launchpad.ethereum.org/en/checklist
https://kb.beaconcha.in/ethereum-2-keys
https://docs.prylabs.network/docs/install/install-with-script/
https://launchpad.ethereum.org/en/checklist
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal

EXHIBIT 3

22

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#broadcast-attestation
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#broadcast-aggregate

iii. a third computer processor
coupled to the third memory
and the third network
interface, the third computer
processor configured to read
the third private key from
memory; and

The newly activated Validator is required to sign (by reading the locally
stored private key) produced blocks, attestations and aggregated
attestations.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#signature
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#aggregate-signature
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#aggregate-signature-
1

wherein the at least one of the first
client device or the second client
device signs the inchoate data record
and saves a copy of the inchoate data
record on at least one of the first client
device or the second client device,

As the Computing Device and the First Client are the same device
(Coinbase (Owned, managed) Ethereum Validator Node), the inchoate
data record is already signed by the First Client. The signed inchoate
data record (as a complete data record) is broadcast and recorded on the
Ethereum Network.

A validator is expected to propose a SignedBeaconBlock at the
beginning of any slot during which is_proposer(state, validator_index)
returns True. To propose, the validator selects the BeaconBlock,
parent, that in their view of the fork choice is the head of the chain
during slot - 1. The validator creates, signs, and broadcasts a block
that is a child of parent that satisfies a valid beacon chain state
transition.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#block-proposal

wherein the transfer mechanism
comprising a decentralized digital
currency that comprises a distributed
ledger that enables processing the
transaction between the first client
device and the second client device
without the need of a trusted central
authority,

Ether is used as the decentralised currency. The Ethereum network
maintains a distributed ledger without the need for a trusted central
authority.

From the Ethereum yellow paper.
2.1. Value. In order to incentivise computation within the network,
there needs to be an agreed method for transmitting value. To address
this issue, Ethereum has an intrinsic currency, Ether, known also as
ETH and sometimes referred to by the Old English ¯D.

https://ethereum.github.io/yellowpaper/paper.pdf

wherein the transaction is created by
broadcasting the complete data record

As the Computing Device and the First Client are the same device
(Coinbase (Owned, managed) Ethereum Validator Node), the inchoate

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 23 of 117 PageID #: 85

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#broadcast-attestation
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#broadcast-attestation
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#broadcast-aggregate
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#broadcast-aggregate
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#signature
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#signature
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#aggregate-signature
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#aggregate-signature
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#aggregate-signature-1
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#aggregate-signature-1
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#aggregate-signature-1
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#signedbeaconblock
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#signedbeaconblock
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beacon-chain-state-transition-function
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beacon-chain-state-transition-function
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beacon-chain-state-transition-function
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#block-proposal
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

EXHIBIT 3

23

for transmitting and receiving among
network participants in the computer
network for recording in the
distributed ledger, and

data record is already signed by the First Client. The signed inchoate
data record (as a complete data record) is broadcast and recorded on the
Ethereum Network.

The SignedBeaconBlock, in order to achieve consensus, is required to
be signed by the Ethereum Network as the First Client (the Eth2
Validators) as either the Block Producer, Attester or Aggregator’s.

Proposer index
Set block.proposer_index = validator_index where validator_index is
the validator chosen to propose at this slot. The private key mapping to
state.validators[validator_index].pubkey is used to sign the block.
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#proposer-index

Attesting
A validator is expected to create, sign, and broadcast an attestation
during each epoch. The committee, assigned index, and assigned slot
for which the validator performs this role during an epoch are defined
by get_committee_assignment(state, epoch, validator_index).
https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#attesting

Construct aggregate
If the validator is selected to aggregate (is_aggregator()), they
construct an aggregate attestation via the following.
Collect attestations seen via gossip during the slot that have an
equivalent attestation_data to that constructed by the validator. If
len(attestations) > 0, create an aggregate_attestation: Attestation with
the following fields.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/validator.md#construct-attestation

def get_aggregate_signature(attestations: Sequence[Attestation]) ->
BLSSignature:
 signatures = [attestation.signature for attestation in attestations]
 return bls.Aggregate(signatures)

The Coinbase (Owned, managed) Ethereum Validator Node uses the
SignedBeaconBlock (as a complete data record) along with the
broadcasted Aggregated Attestations to update its record of the Beacon
Chain. Finality is achieved if two epochs in a row are justified.

ETH2 uses Casper Proof of Stake, specifically, something called a
“finality gadget”. The ETH2 finality process is defined as follows:

3. If > 2/3rds of validators vote correctly on the chain head
during an epoch, we call the last epoch justified

4. If two epochs in a row are justified, the current_epoch - 2 is
considered finalized

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 24 of 117 PageID #: 86

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#proposer-index
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#proposer-index
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#proposer-index
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#construct-attestation
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#construct-attestation
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#construct-attestation

EXHIBIT 3

24

https://hackmd.io/@prysmaticlabs/finality#How-Finality-Works-in-
ETH2

The Coinbase (Owned, managed) Ethereum Validator Node as the First
Client process the Beacon Block and records the new Validator in the
Registry on identifying a new deposit in the Deposit Contract. The
Beacon Block is saved by each Eth2 Client.

https://github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/beacon-chain.md#deposits

wherein at least one of the computer
device, the first client device, or the
second client device verifies the
recording of the complete data record
in the distributed ledger by observing
an external state

The new Validator Node, as the Second Client, can view the status of
its activation from https://beaconcha.in/

Once a deposit is made to the Ethereum Beacon Chain, it will join a
waiting queue before joining the network.
All Ethereum 2.0 deposits have two delays before going into the waiting
queue:

3. Eth1 data inclusion delay: The Beacon Chain follows Eth1
with some delay to make sure the Eth1 data is finalized.

4. Eth1 data voting delay: The Beacon Chain validators vote on
the deposits to process every 4 hours.

You can check more details about your validator, including the
estimated time to join the network, at https://beaconcha.in/.

https://intercom.help/stakefish/en/articles/4799068-when-will-my-
validator-join-the-network-and-be-activated

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 25 of 117 PageID #: 87

https://hackmd.io/@prysmaticlabs/finality#How-Finality-Works-in-ETH2
https://hackmd.io/@prysmaticlabs/finality#How-Finality-Works-in-ETH2
https://hackmd.io/@prysmaticlabs/finality#How-Finality-Works-in-ETH2
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#deposits
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#deposits
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#deposits
https://beaconcha.in/
https://beaconcha.in/
https://beaconcha.in/
https://beaconcha.in/
https://intercom.help/stakefish/en/articles/4799068-when-will-my-validator-join-the-network-and-be-activated
https://intercom.help/stakefish/en/articles/4799068-when-will-my-validator-join-the-network-and-be-activated
https://intercom.help/stakefish/en/articles/4799068-when-will-my-validator-join-the-network-and-be-activated

EXHIBIT 3

25

Claim Chart U.S. Patent No. 11,196,566 (the “’566 Patent”) Coinbase
Claim 8 Coinbase Products & Services

Payment of block rewards to new Validator Nodes under Proof of Stake
The system of claim
7, where the first
computer processor
is further configured
to:

The Computing Device | Facilitator consists of:
• the Coinbase (Owned, managed) Ethereum Validator Full Nodes; and
• the Coinbase (Owned, managed) Ethereum supporting Archive Nodes and

Light Nodes; and

Client Device
The First Client is the active Coinbase (Owned, managed) Ethereum Validator Full
Nodes. The Facilitator and the First Client are the same device.
The Second Client is the newly activated Validator Node, which will include any
prospective Coinbase (Owned, managed) Ethereum Validator Nodes.

compute a third
cryptographic
signature from the
first private key;

The Voluntary Exit is initiated and signed from the Validator Nodes Client CLI.

Teku Client
teku voluntary-exit --validator-keys=<KEY_DIR>:<PASS_DIR> |
<KEY_FILE>:<PASS_FILE>[,<KEY_DIR>:<PASS_DIR> |
<KEY_FILE>:<PASS_FILE>...]…
https://docs.teku.consensys.net/en/latest/Reference/CLI/Subcommands/Voluntary-Exit/

Lighthouse Client
In order to initiate an exit, users can use the lighthouse account validator exit command.

 The --keystore flag is used to specify the path to the EIP-2335 voting keystore
for the validator.

 The --beacon-node flag is used to specify a beacon chain HTTP endpoint that
confirms to the Eth2.0 Standard Beacon Node API specifications. That beacon
node will be used to validate and propagate the voluntary exit. The default
value for this flag is http://localhost:5052.

 The --network flag is used to specify a particular Eth2 network (default is
mainnet).

 The --password-file flag is used to specify the path to the file containing the
password for the voting keystore. If this flag is not provided, the user will be
prompted to enter the password.

After validating the password, the user will be prompted to enter a special exit phrase as
a final confirmation after which the voluntary exit will be published to the beacon chain.

https://lighthouse-book.sigmaprime.io/voluntary-exit.html

create another
inchoate data
record comprising:

A Signed Voluntary Exit message is created.

a commit input for
receiving the
commit data from
the commit
transaction;

The Voluntary Exit is initiated and signed from the Validator Client.

Teku Client
teku voluntary-exit --validator-keys=<KEY_DIR>:<PASS_DIR> |
<KEY_FILE>:<PASS_FILE>[,<KEY_DIR>:<PASS_DIR> |
<KEY_FILE>:<PASS_FILE>...]…
https://docs.teku.consensys.net/en/latest/Reference/CLI/Subcommands/Voluntary-Exit/

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 26 of 117 PageID #: 88

https://docs.teku.consensys.net/en/latest/Reference/CLI/Subcommands/Voluntary-Exit/
https://docs.teku.consensys.net/en/latest/Reference/CLI/Subcommands/Voluntary-Exit/
https://ethereum.github.io/beacon-APIs/
https://ethereum.github.io/beacon-APIs/
http://localhost:5052/
http://localhost:5052/
https://lighthouse-book.sigmaprime.io/voluntary-exit.html
https://lighthouse-book.sigmaprime.io/voluntary-exit.html
https://docs.teku.consensys.net/en/latest/Reference/CLI/Subcommands/Voluntary-Exit/
https://docs.teku.consensys.net/en/latest/Reference/CLI/Subcommands/Voluntary-Exit/

EXHIBIT 3

26

Lighthouse Client
In order to initiate an exit, users can use the lighthouse account validator exit command.

 The --keystore flag is used to specify the path to the EIP-2335 voting keystore
for the validator.

 The --beacon-node flag is used to specify a beacon chain HTTP endpoint that
confirms to the Eth2.0 Standard Beacon Node API specifications. That beacon
node will be used to validate and propagate the voluntary exit. The default
value for this flag is http://localhost:5052.

 The --network flag is used to specify a particular Eth2 network (default is
mainnet).

 The --password-file flag is used to specify the path to the file containing the
password for the voting keystore. If this flag is not provided, the user will be
prompted to enter the password.

After validating the password, the user will be prompted to enter a special exit phrase as
a final confirmation after which the voluntary exit will be published to the beacon chain.

https://lighthouse-book.sigmaprime.io/voluntary-exit.html

a refund output
comprising a
refund data; and

The Voluntary Exit message contains a reference to the ValidatorIndex which is a
pointer to the account. The refund output is the account balance.

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-
chain.md#voluntary-exits

def process_voluntary_exit(state: BeaconState, signed_voluntary_exit:
SignedVoluntaryExit) -> None:
 voluntary_exit = signed_voluntary_exit.message
 validator = state.validators[voluntary_exit.validator_index]
 # Verify the validator is active
 assert is_active_validator(validator, get_current_epoch(state))
 # Verify exit has not been initiated
 assert validator.exit_epoch == FAR_FUTURE_EPOCH
 # Exits must specify an epoch when they become valid; they are not valid before then
 assert get_current_epoch(state) >= voluntary_exit.epoch
 # Verify the validator has been active long enough
 assert get_current_epoch(state) >= validator.activation_epoch +
SHARD_COMMITTEE_PERIOD
 # Verify signature
 domain = get_domain(state, DOMAIN_VOLUNTARY_EXIT, voluntary_exit.epoch)
 signing_root = compute_signing_root(voluntary_exit, domain)
 assert bls.Verify(validator.pubkey, signing_root, signed_voluntary_exit.signature)
 # Initiate exit
 initiate_validator_exit(state, voluntary_exit.validator_index)

the third
cryptographic
signature; and

The Signed Voluntary Exit message contains the signature from the Validator.

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-
chain.md#signedvoluntaryexit

class SignedVoluntaryExit(Container): message: VoluntaryExit signature:
BLSSignature

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 27 of 117 PageID #: 89

https://ethereum.github.io/beacon-APIs/
https://ethereum.github.io/beacon-APIs/
http://localhost:5052/
http://localhost:5052/
https://lighthouse-book.sigmaprime.io/voluntary-exit.html
https://lighthouse-book.sigmaprime.io/voluntary-exit.html
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#voluntary-exits
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#voluntary-exits
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#voluntary-exits
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#signedvoluntaryexit
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#signedvoluntaryexit
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#signedvoluntaryexit

EXHIBIT 3

27

publish the another
inchoate data
record to at least
one of the first client
and the second
client.

As the Computing Device and the First Client are the same device (Coinbase Ethereum
Validator Node), the inchoate data record is already signed by the First Client. As such
the inchoate data record is considered to be published to the First Client on creation of
the inchoate data record by the Validator Node.

The signed inchoate data record (as a complete data record) is broadcast and recorded on
the Ethereum Network.
The following is an example output message from the Lighthouse Client.

Successfully published voluntary exit for validator 0xabcd Voluntary exit has been
accepted into the beacon chain, but not yet finalized. Finalization may take several
minutes or longer. Before finalization there is a low probability that the exit may be
reverted. Current epoch: 29946, Exit epoch: 29951, Withdrawable epoch: 30207 Please
keep your validator running till exit epoch Exit epoch in approximately 1920 secs.

https://lighthouse-book.sigmaprime.io/voluntary-exit.html

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 28 of 117 PageID #: 90

https://lighthouse-book.sigmaprime.io/voluntary-exit.html
https://lighthouse-book.sigmaprime.io/voluntary-exit.html

EXHIBIT 3

28

Claim Chart U.S. Patent No. 11,196,566 (the “’566 Patent”) Coinbase

Claim 1
A computing device for processing a
transaction between a first client device, and
a second client device via a transfer
mechanism, the transfer mechanism
comprising a decentralized digital currency

Coinbase Products & Services
Payment to Validator Node from a transaction (that incurs
a transaction fee) on the Solana Network.

The computing device comprising: The Computing Device | Facilitator consists of:
• the Coinbase (Owned, managed or offered) Solana

Validator Full Nodes; and
• the Coinbase (Owned, managed or offered) Solana

supporting Archive Nodes and Light Nodes; and
• the Coinbase (Solana compatible) wallets;

Where both the Coinbase Nodes and the Coinbase Solana compatible
end user wallet device are networked to have direct or indirect
communication with each other.

The Computing Device and the First Client are considered to be the
same device. Four (4) instances have been identified that represent
various implementations that exist.

• The Computing Device and the First Client are the same
device where the First Client runs Coinbase Wallet software
to create, sign and submit transactions to the Solana Node
for processing.

• The Computing Device and the First Client are the same

device where the First Client is a Client Browser or
Command Line Interface on a Coinbase Solana Node used
to create, sign and submit transactions to the Coinbase
Solana Node for processing.

• The Computing Device and the First Client are the same

device where the First Client utilises Coinbase Private Key
management mechanism in order to sign and submit
transactions to the Coinbase Solana Node for processing.

• The Computing Device and the First Client are the same

device where the First Client is a Coinbase Validator Node
with a vote account key pair to sign voting transactions.

The Patent allows for, and the Claims do not prevent, the Computing
System from being, or including, the First Client. This is detailed in
the Patent description [0055].

FIG. 1 (see Figure 16) depicts a typical embodiment for practicing the
invention—especially for use with a distributed transfer mechanism—
where the clients, transfer mechanism, facilitator, and data source are
distinct participants. However, the depicted arrangement is not the
only one contemplated by the invention. In an alternate embodiment,

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 29 of 117 PageID #: 91

EXHIBIT 3

29

the facilitator provides some or all aspects of the transfer mechanism.
In another embodiment, the facilitator comprises some or all aspects
of a client. For example, part or all of a client's data store, the ability
to initiate or accept offers, etc., could be “embedded” in the
facilitator, thereby enabling the facilitator to operate as a client itself
(e.g., one controlled by the owners of the facilitator, or on behalf of a
third party who has entrusted control to the facilitator). In yet another
embodiment, the facilitator comprises the data source. Many
configurations are contemplated by the invention are possible, and
will become apparent to one skilled in the art.

• a memory for storing a first
asymmetric key pair, the first
asymmetric key pair comprising
a first private key and a first
public key;

The First Client, as part of the Computing Device, need a computer
hardware/software combination to run, namely:

• Memory (RAM), used in the computing device (such as a
computer or mobile phone).

• Transaction record sector (stores transactions that haven't
been submitted to the blockchain yet) kept via the crypto
software wallets

Where the First Client runs Coinbase Wallet software to sign
transactions, contains:

• a first key pair sector which is generated and stored in the
wallet software

• The asymmetric key pair generated and/or stored consists of
a first private key and a first public key – all found and
manipulated via the wallet software.

• The wallet software connects via the public key or the key
pair, and authorizes (signs) the transaction with the private
key of the key pair.

Where the First Client is a Coinbase Solana Node Client Browser or
Command Line Interface to transaction creation, contains:

• a first key pair sector which is generated and stored on the
device

• The asymmetric key pair stored consists of a first private
key and a first public key.

Where the First Client utilises Coinbase Private key management in
order to sign transactions, contains:

• a first key pair sector which is stored in the key
management vault/software

• The asymmetric key pair generated and/or stored consists of
a first private key and a first public key – all found and
manipulated via the key management vault/software.

• The key management vault/software connects via the public
key or the key pair, and authorizes (signs) the transaction
with the private key of the key pair.

Where the First Client is a Coinbase Validator Node with a vote
account key pair to sign voting transactions contains

• a first key pair sector which is generated and stored on the
device

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 30 of 117 PageID #: 92

EXHIBIT 3

30

• The asymmetric key pair stored consists of a first private
key and a first public key.

Source Code
https://github.com/solana-
labs/solana/blob/master/validator/src/main.rs#L2999

• a network interface for receiving
terms, the terms comprising:

The Coinbase Wallet product serves as the network interface usage
implementation, we see the following.

The app prompts you to connect to “Connect my Coinbase Wallet”
Note that the mobile data interface is set to airplane mode, which
disables all network data i/o coming into and out of the mobile device
(reference the ‘plane’ icon in the upper RHS corner).

Upon attempting to “Connect my Coinbase…” with the data interface
disabled, a blank screen results, as follows:

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 31 of 117 PageID #: 93

https://github.com/solana-labs/solana/blob/master/validator/src/main.rs#L2999
https://github.com/solana-labs/solana/blob/master/validator/src/main.rs#L2999

EXHIBIT 3

31

The Coinbase Wallet app interfaces with nodes and servers in the
Coinbase infrastructure to query information or connect to a client. To
fetch data like user identification verification credentials, token swap
rates, token balances, and other information from the Coinbase
infrastructure servers, nodes and smart contracts, such infrastructure
responds to queries through the Coinbase Wallet app, the network
interface,
Once the network interface is enabled, as shown by the wi-fi and
cellular service icons in the upper right-hand corner that have replaced
the airplane mode symbol, the interface for entering and submitting
user credentials is available after querying Coinbase’s servers. The
interface actually states that “you will be redirected to
https://wallet.coinbase.com (their website) after the authorization”

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 32 of 117 PageID #: 94

https://wallet.coinbase.com/

EXHIBIT 3

32

Once the Coinbase Wallet app is connected, it is able to query
Coinbase infrastructure and populate the app with a plethora of
information.

Choosing the “Send” option as an illustration, we can opt to send SOL
to any address.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 33 of 117 PageID #: 95

EXHIBIT 3

33

The Coinbase Wallet app populates the app with prices, quantities and
transaction fees.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 34 of 117 PageID #: 96

EXHIBIT 3

34

Note below, with the airplane mode turned on to deprive the Coinbase
Wallet app access to the Coinbase infrastructure results in a very
different outcome when one attempts to perform the send transaction

An error dialog is given after the “continue” button is depressed.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 35 of 117 PageID #: 97

EXHIBIT 3

35

o at least one of a first

principal data or a
second principal data;

First principle data
A transaction fee provided by the Client to pay for sending a
transaction.

Note: Before any transaction instructions are processed, the fee payer
account balance will be deducted to pay for transaction fees. If the fee
payer balance is not sufficient to cover transaction fees, the transaction
will be dropped by the cluster. If the balance was sufficient, the fees
will be deducted whether the transaction is processed successfully or
not. In fact, if any of the transaction instructions return an error or
violate runtime restrictions, all account changes *except* the
transaction fee deduction will be rolled back.

https://solanacookbook.com/core-concepts/transactions.html#fees

https://jstarry.notion.site/Transaction-Fees-
f09387e6a8d84287aa16a34ecb58e239

o a reference to at least
one of a first data
source or a second
data source; and

First data source
The current lampoons per signature

Each validator uses signatures per slot (SPS) to estimate network
congestion and SPS target to estimate the desired processing capacity
of the cluster. The validator learns the SPS target from the genesis
config, whereas it calculates SPS from recently processed transactions.
The genesis config also defines a target lamports_per_signature, which
is the fee to charge per signature when the cluster is operating at SPS
target.
https://docs.solana.com/implemented-proposals/transaction-
fees#congestion-driven-fees

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 36 of 117 PageID #: 98

https://solanacookbook.com/core-concepts/transactions.html#fees
https://jstarry.notion.site/Transaction-Fees-f09387e6a8d84287aa16a34ecb58e239
https://jstarry.notion.site/Transaction-Fees-f09387e6a8d84287aa16a34ecb58e239
https://docs.solana.com/implemented-proposals/transaction-fees#congestion-driven-fees
https://docs.solana.com/implemented-proposals/transaction-fees#congestion-driven-fees

EXHIBIT 3

36

Note that the Client uses the JSON RPC API to query the cluster for
the current fee parameters. getFeeForMessage
https://docs.solana.com/developing/clients/jsonrpc-
api#getfeeformessage

Second data source
The portion of the transaction fee payable to the Leader. 50% of each
transaction fee is burned, with the remaining fee retained by the
validator that processes the transaction.
https://docs.solana.com/inflation/terminology#effective-inflation-rate-

o an expiration
timestamp;

1. The transaction needs to be performed within a timeframe.
Thus the expiration time is implied from the use of the network.

A transaction includes a recent blockhash to prevent duplication and
to give transactions lifetimes. Any transaction that is completely
identical to a previous one is rejected, so adding a newer blockhash
allows multiple transactions to repeat the exact same action.
Transactions also have lifetimes that are defined by the blockhash, as
any transaction whose blockhash is too old will be rejected.

https://docs.solana.com/developing/programming-
model/transactions#recent-blockhash

A blockhash contains a 32-byte SHA-256 hash. It is used to indicate
when a client last observed the ledger. Validators will reject
transactions when the blockhash is too old.

https://docs.solana.com/developing/programming-
model/transactions#blockhash-format

Source Code
Calculation of blockhash as part of transaction creation.
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L656

2. The Leader Validator processes the disbursement amount on
receipt of the voting transaction.

Before any transaction instructions are processed, the fee payer
account balance will be deducted to pay for transaction fees. If the fee
payer balance is not sufficient to cover transaction fees, the
transaction will be dropped by the cluster. If the balance was
sufficient, the fees will be deducted whether the transaction is
processed successfully or not. In fact, if any of the transaction
instructions return an error or violate runtime restrictions, all account
changes *except* the transaction fee deduction will be rolled back.

https://solanacookbook.com/core-concepts/transactions.html#fees

https://jstarry.notion.site/Transaction-Fees-
f09387e6a8d84287aa16a34ecb58e239

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 37 of 117 PageID #: 99

https://docs.solana.com/developing/clients/jsonrpc-api#getfeeformessage
https://docs.solana.com/developing/clients/jsonrpc-api#getfeeformessage
https://docs.solana.com/inflation/terminology#effective-inflation-rate-
https://docs.solana.com/developing/programming-model/transactions#recent-blockhash
https://docs.solana.com/developing/programming-model/transactions#recent-blockhash
https://docs.solana.com/developing/programming-model/transactions#blockhash-format
https://docs.solana.com/developing/programming-model/transactions#blockhash-format
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L656
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L656
https://solanacookbook.com/core-concepts/transactions.html#fees
https://jstarry.notion.site/Transaction-Fees-f09387e6a8d84287aa16a34ecb58e239
https://jstarry.notion.site/Transaction-Fees-f09387e6a8d84287aa16a34ecb58e239

EXHIBIT 3

37

Note the following.

The description of the patent allows for the terms to define a point in
time ‘on or after the expiration timestamp or at a time or upon an
event as defined by the terms…’. In this instance the event is the
reception of the transaction for processing.

Patent references:
[0123] 22. On or after the expiration timestamp or at a time or upon
an event as defined by the terms, and before the lock time of the
complete refund transaction record, …

[0186] 21. On or after the expiration timestamp, or at a time or upon
an event as defined by the terms, and before the lock time of the
complete refund transaction record, ...

• a computer processor coupled to
the memory and the network
interface, the computer
processor configured to:

The hardware device running the App (First Client as part of the
Computing Device) such as a computer or mobile phone.

i. read the first private key from
the memory;

The hardware device running the Coinbase Wallet software on a
computer or mobile phone. Coinbase Wallet app requesting
verification to access (read) the private key to authorize transaction.

RPC Source Code
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 38 of 117 PageID #: 100

https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654

EXHIBIT 3

38

The validator identity is a system account that is used to pay for all the
vote transaction fees submitted to the vote account. Because the
validator is expected to vote on most valid blocks it receives, the
validator identity account is frequently (potentially multiple times per
second) signing transactions and paying fees. For this reason the
validator identity keypair must be stored as a "hot wallet" in a keypair
file on the same system the validator process is running.

Validator Code Reference
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L17

ii. compute a first cryptographic
signature from the first private
key;

The hardware device running the Coinbase Wallet software on a
computer or mobile phone. Coinbase Wallet app requesting
verification to access (read) the private key calculate a signature to
authorize transaction.

RPC Source Code
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L129
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L813
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 39 of 117 PageID #: 101

https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L17
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L17
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L129
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L129
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L813
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L813
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654

EXHIBIT 3

39

The validator identity is a system account that is used to pay for all the
vote transaction fees submitted to the vote account. Because the
validator is expected to vote on most valid blocks it receives, the
validator identity account is frequently (potentially multiple times per
second) signing transactions and paying fees. For this reason the
validator identity keypair must be stored as a "hot wallet" in a keypair
file on the same system the validator process is running.

Validator Code Reference
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39

iii. create an inchoate data record
comprising:

The First Client as part of the Computing Device creates a transaction
message to be sent to the Solana Network. RPC JSON API calls are
defined to allow interaction with the Solana Network. The App
constructs the following RPC message.

sendTransaction

Object - The transaction object

1. header - The message header contains three unsigned 8-bit
values. The first value is the number of required signatures
in the containing transaction. The second value is the
number of those corresponding account addresses that are
read-only. The third value in the message header is the
number of read-only account addresses not requiring
signatures.

2. Account addresses - The addresses that require signatures
appear at the beginning of the account address array, with
addresses requesting write access first and read-only
accounts following. The addresses that do not require
signatures follow the addresses that do, again with read-
write accounts first and read-only accounts following.

3. Blockhash - A blockhash contains a 32-byte SHA-256 hash.
It is used to indicate when a client last observed the ledger.
Validators will reject transactions when the blockhash is too
old

4. Instructions - An instruction contains a program id index,
followed by a compact-array of account address indexes,
followed by a compact-array of opaque 8-bit data. The
program id index is used to identify an on-chain program
that can interpret the opaque data. The program id index is
an unsigned 8-bit index to an account address in the
message's array of account addresses. The account address
indexes are each an unsigned 8-bit index into that same
array.

Official Documentation Reference
https://docs.solana.com/developing/programming-model/transactions
https://docs.solana.com/developing/clients/jsonrpc-
api#sendtransaction

RPC Code Reference
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 40 of 117 PageID #: 102

https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39
https://docs.solana.com/developing/programming-model/transactions
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128

EXHIBIT 3

40

https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L648

Validator Code Reference
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L11

• a commit input for receiving a
commit data from a commit
transaction;

The commit input is the primary account address which will pay the
transaction fee.

Transactions are required to have at least one account which has
signed the transaction and is writable. Writable signer accounts are
serialized first in the list of transaction accounts and the first of these
accounts is always used as the "fee payer".

Note that the Client can use the JSON RPC API to query the cluster
for the current fee parameters. (getFeeForMessage) to determine
the total fee payable to ensure that the paying account has the required
amount to pay.

Official Documentation Reference
https://docs.solana.com/developing/clients/jsonrpc-
api#getfeeformessage

RPC Code Reference
The transaction sent to the RPC Client contains the Transaction
generated by the App.
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640

The commit input is the primary account address which will pay the
transaction fee.

The validator identity is a system account that is used to pay for all the
vote transaction fees submitted to the vote account. Because the
validator is expected to vote on most valid blocks it receives, the
validator identity account is frequently (potentially multiple times per
second) signing transactions and paying fees. For this reason the
validator identity keypair must be stored as a "hot wallet" in a keypair
file on the same system the validator process is running.
https://docs.solana.com/running-validator/vote-accounts#validator-
identity

Validator Code Reference
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L24
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L31

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 41 of 117 PageID #: 103

https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L648
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L648
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L11
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L11
https://docs.solana.com/developing/clients/jsonrpc-api#getfeeformessage
https://docs.solana.com/developing/clients/jsonrpc-api#getfeeformessage
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640
https://docs.solana.com/running-validator/vote-accounts#validator-identity
https://docs.solana.com/running-validator/vote-accounts#validator-identity
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L24
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L24
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L31
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L31

EXHIBIT 3

41

• one or more output data
obtained from at least one of the
first principal data or the second
principal data, and a value data
from at least one of the first data
source or the second data
source; and

The output data included in the transaction message is as follows.

• The list of signatures in the message. The Validator leader
will use this, along with the clusters current lampoons per
signature, to calculate the total transaction fee.

Official Documentation Reference
https://docs.solana.com/implemented-proposals/transaction-
fees#congestion-driven-fees

RPC Code Reference
The transaction sent to the RPC Client contains the Transaction
generated by the App.
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640

Validator Code Reference
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L36
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39

• the first cryptographic signature;
and

The hardware device running the Coinbase Wallet software on a
computer or mobile phone. Coinbase Wallet app requesting
verification to access (read) the private key to calculate a signature to
authorize transaction.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 42 of 117 PageID #: 104

https://docs.solana.com/implemented-proposals/transaction-fees#congestion-driven-fees
https://docs.solana.com/implemented-proposals/transaction-fees#congestion-driven-fees
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L36
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L36
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39

EXHIBIT 3

42

The Coinbase Wallet creates a transaction message to be sent to the
Coinbase Solana Node. RPC JSON API calls are defined to allow
interaction with the Solana Nodes. The Coinbase Wallet constructs the
following RPC message.

sendTransaction

Submits a signed transaction to the cluster for processing.

Before submitting, the following preflight checks are performed:

The transaction signatures are verified
The transaction is simulated against the bank slot specified by the
preflight commitment. On failure an error will be returned. Preflight
checks may be disabled if desired. It is recommended to specify the
same commitment and preflight commitment to avoid confusing
behavior.
The returned signature is the first signature in the transaction, which is
used to identify the transaction (transaction id). This identifier can be
easily extracted from the transaction data before submission.

Official Documentation Reference
https://docs.solana.com/developing/clients/jsonrpc-
api#sendtransaction
https://docs.solana.com/developing/programming-
model/transactions#signatures
https://solanacookbook.com/core-concepts/transactions.html#fees

RPC Code Reference
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L129
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L813
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654

Validator Code Reference
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39

iv. publish the inchoate data record
to at least one of the first client
device or the second client
device,

Given the Computing Device and the First Client are the same device,
this clause is not applicable. The First Client as part of the Computing
Device does create a transaction message (where the signed inchoate
transaction record = complete transaction record).

Official Documentation Reference
https://docs.solana.com/developing/clients/jsonrpc-
api#sendtransaction

RPC Source Code

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 43 of 117 PageID #: 105

https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction
https://docs.solana.com/developing/programming-model/transactions#signatures
https://docs.solana.com/developing/programming-model/transactions#signatures
https://solanacookbook.com/core-concepts/transactions.html#fees
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L129
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L129
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L813
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L813
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction

EXHIBIT 3

43

https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935

Validator Code Reference
https://github.com/solana-
labs/solana/blob/master/gossip/src/cluster_info.rs#L1087

wherein the decentralized digital currency
comprises a distributed ledger that enables
processing the transaction between the first
client device and the second client device
without the need for a trusted central
authority,

A SOL is the name of Solana's native token, which can be passed to
nodes in a Solana cluster in exchange for running an on-chain program
or validating its output. The system may perform micropayments of
fractional SOLs, which are called lamports.

https://docs.solana.com/introduction#what-are-sols

wherein the inchoate data record is used by
at least one of the first client device or the
second client device to create a complete
data record and to create the transaction by
broadcasting the complete data record for
transmitting and receiving among network
participants in the computer network for
recording in the distributed ledger,

The Coinbase Wallet creates a transaction message to be sent to the
Coinbase Solana Node. RPC JSON API calls are defined to allow
interaction with the Solana Nodes.

Only the First Client is required to sign the transaction and so once
signed the RPC JSON API call ‘sendTransaction’ is considered to be
a complete data record and is broadcast to the Leader Validator via the
Coinbase Solana Node.

Official Documentation Reference
https://docs.solana.com/developing/clients/jsonrpc-
api#sendtransaction

RPC Source Code
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935

Validator Code Reference
https://github.com/solana-
labs/solana/blob/master/gossip/src/cluster_info.rs#L1087

wherein at least one of the first client device
or the second client device signs the
inchoate data record and saves a copy of the
inchoate data record on at least one of the
first client device or the second client
device; and

The Coinbase Wallet creates a transaction message to be sent to the
Coinbase Solana Node. RPC JSON API calls are defined to allow
interaction with the Solana Nodes.

Only the First Client is required to sign the transaction and so once
signed the RPC JSON API call ‘sendTransaction’ is considered to be
a complete data record and is broadcast to the Leader Validator via the
Coinbase Solana Node.

Official Documentation Reference
https://docs.solana.com/developing/clients/jsonrpc-
api#sendtransaction

RPC Source Code
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935

Validator Code Reference
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 44 of 117 PageID #: 106

https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935
https://github.com/solana-labs/solana/blob/master/gossip/src/cluster_info.rs#L1087
https://github.com/solana-labs/solana/blob/master/gossip/src/cluster_info.rs#L1087
https://docs.solana.com/introduction#what-are-sols
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935
https://github.com/solana-labs/solana/blob/master/gossip/src/cluster_info.rs#L1087
https://github.com/solana-labs/solana/blob/master/gossip/src/cluster_info.rs#L1087
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38

EXHIBIT 3

44

https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39

A copy of the inchoate data record is (optionally, as described in pgs
11 and 15 of the general description text of the patent) saved on the
Leader Validator node.

wherein the at least one of the computing
device, the first client device, or the second
client device verifies the recording of the
complete data record in the distributed
ledger by observing an external state.

The Coinbase Wallet shows the transaction history.

The Coinbase Wallet shows the transaction details along with a link to
the Solana explorer.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 45 of 117 PageID #: 107

https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39

EXHIBIT 3

45

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 46 of 117 PageID #: 108

EXHIBIT 3

46

Claim Chart U.S. Patent No. 11,196,566 (the “’566 Patent”) Coinbase
Claim 2 Coinbase Products & Services

Payment to Validator Node from a transaction (that incurs a
transaction fee) on the Solana Network.

The device of claim 1, where:
the computer processor is configured
to obtain the one or more output data
based on:

The following disbursements are made.
1. The transaction fee is withdrawn from the senders account by

the Lead Validator as part of processing the transaction and
(likely) inclusion into the Block.

2. The transaction fees collected from all processed transactions
are banked for disbursement at the end of the epoch.

3. The transaction fees collected are disbursed to the Lead
Validators vote account based on the accounts commission
rate with the remainder of the rewards being distributed to all
of the stake accounts delegated to that vote account,
proportional to the active stake weight of each stake account.

the first principal data; and
the value data from the first data
source.

Before any transaction instructions are processed, the fee payer account
balance will be deducted to pay for transaction fees. If the fee payer
balance is not sufficient to cover transaction fees, the transaction will be
dropped by the cluster. If the balance was sufficient, the fees will be
deducted whether the transaction is processed successfully or not. In
fact, if any of the transaction instructions return an error or violate
runtime restrictions, all account changes *except* the transaction fee
deduction will be rolled back.

https://solanacookbook.com/core-concepts/transactions.html#fees

https://jstarry.notion.site/Transaction-Fees-
f09387e6a8d84287aa16a34ecb58e239

The collected transaction fees (of those transactions included in the
Block) by the Lead Validator are:

1. burnt based on the genesis burnt rate (second data source)
2. written to the Validators vote account for disbursement.

Source Code – Calculation of fee for the individual transaction using the
first Data Source
https://github.com/solana-
labs/solana/blob/master/runtime/src/bank.rs#L4805
https://github.com/solana-
labs/solana/blob/master/runtime/src/bank.rs#L4718

Source Code – Withdraw transaction fee from senders account
https://github.com/solana-
labs/solana/blob/master/runtime/src/bank.rs#L4822
https://github.com/solana-
labs/solana/blob/master/runtime/src/bank.rs#L6256

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 47 of 117 PageID #: 109

https://solanacookbook.com/core-concepts/transactions.html#fees
https://jstarry.notion.site/Transaction-Fees-f09387e6a8d84287aa16a34ecb58e239
https://jstarry.notion.site/Transaction-Fees-f09387e6a8d84287aa16a34ecb58e239
https://github.com/solana-labs/solana/blob/master/runtime/src/bank.rs#L4805
https://github.com/solana-labs/solana/blob/master/runtime/src/bank.rs#L4805
https://github.com/solana-labs/solana/blob/master/runtime/src/bank.rs#L4718
https://github.com/solana-labs/solana/blob/master/runtime/src/bank.rs#L4718
https://github.com/solana-labs/solana/blob/master/runtime/src/bank.rs#L4822
https://github.com/solana-labs/solana/blob/master/runtime/src/bank.rs#L4822
https://github.com/solana-labs/solana/blob/master/runtime/src/bank.rs#L6256
https://github.com/solana-labs/solana/blob/master/runtime/src/bank.rs#L6256

EXHIBIT 3

47

Source Code – Burning of a percentage of all fees collected using the
second Data Source
 https://github.com/solana-
labs/solana/blob/master/runtime/src/bank.rs#L3280
https://github.com/solana-
labs/solana/blob/master/runtime/src/bank.rs#L3284

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 48 of 117 PageID #: 110

https://github.com/solana-labs/solana/blob/master/runtime/src/bank.rs#L3280
https://github.com/solana-labs/solana/blob/master/runtime/src/bank.rs#L3280
https://github.com/solana-labs/solana/blob/master/runtime/src/bank.rs#L3284
https://github.com/solana-labs/solana/blob/master/runtime/src/bank.rs#L3284

EXHIBIT 3

48

Claim Chart U.S. Patent No. 11,196,566 (the “’566 Patent”) Coinbase

Claim 7
A system for processing
a transaction between a
first client device and a
second client device via
a transfer mechanism the
system comprising a
computing device, the
first client device, the
second client device, and
the transfer mechanism.

Coinbase Products & Services
Payment to Validator Node from a transaction (that incurs a transaction fee)
on the Solana Network.

7. a. the computing device
comprising:

i. a first memory
comprising for
storing a first
asymmetric key
pair, the first
asymmetric key
pair comprising
a first private
key and a first
public key;

The First Client, as part of the Facilitator, need a computer hardware/software combination
to run, namely:

• Memory (RAM), used in the computing device (such as a computer or mobile
phone).

• Transaction record sector (stores transactions that haven't been submitted to the
blockchain yet) kept via the crypto software wallets

Where the First Client runs Coinbase Wallet software to sign transactions, contains:

• a first key pair sector which is generated and stored in the wallet software
• The asymmetric key pair generated and/or stored consists of a first private key

and a first public key – all found and manipulated via the wallet software.
• The wallet software connects via the public key or the key pair, and authorizes

(signs) the transaction with the private key of the key pair.

Where the First Client is a Coinbase Solana Node Client Browser or Command Line
Interface to transaction creation, contains:

• a first key pair sector which is generated and stored on the device
• The asymmetric key pair stored consists of a first private key and a first public

key.

Where the First Client utilises Coinbase Private key management in order to sign
transactions, contains:

• a first key pair sector which is stored in the key management vault/software
• The asymmetric key pair generated and/or stored consists of a first private key

and a first public key – all found and manipulated via the key management
vault/software.

• The key management vault/software connects via the public key or the key pair,
and authorizes (signs) the transaction with the private key of the key pair.

Where the First Client is a Coinbase Validator Node with a vote account key pair to sign
voting transactions contains

• a first key pair sector which is generated and stored on the device
• The asymmetric key pair stored consists of a first private key and a first public

key
Source Code
https://github.com/solana-labs/solana/blob/master/validator/src/main.rs#L2999

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 49 of 117 PageID #: 111

https://github.com/solana-labs/solana/blob/master/validator/src/main.rs#L2999

EXHIBIT 3

49

ii. a first network
interface for
receiving terms,
the terms
comprising:

The Coinbase Wallet product serves as the network interface usage implementation, we
see the following.

The app prompts you to connect to “Connect my Coinbase Wallet”
Note that the mobile data interface is set to airplane mode, which disables all network data
i/o coming into and out of the mobile device (reference the ‘plane’ icon in the upper RHS
corner).

Upon attempting to “Connect my Coinbase…” with the data interface disabled, a blank
screen results, as follows:

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 50 of 117 PageID #: 112

EXHIBIT 3

50

The Coinbase Wallet app interfaces with nodes and servers in the Coinbase infrastructure
to query information or connect to a client. To fetch data like user identification
verification credentials, token swap rates, token balances, and other information from the
Coinbase infrastructure servers, nodes and smart contracts, such infrastructure responds to
queries through the Coinbase Wallet app, the network interface,
Once the network interface is enabled, as shown by the wi-fi and cellular service icons in
the upper right-hand corner that have replaced the airplane mode symbol, the interface for
entering and submitting user credentials is available after querying Coinbase’s servers.
The interface actually states that “you will be redirected to https://wallet.coinbase.com
(their website) after the authorization”

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 51 of 117 PageID #: 113

https://wallet.coinbase.com/

EXHIBIT 3

51

Once the Coinbase Wallet app is connected, it is able to query Coinbase infrastructure and
populate the app with a plethora of information.

Choosing the “Send” option as an illustration, we can opt to send SOL to any address.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 52 of 117 PageID #: 114

EXHIBIT 3

52

The Coinbase Wallet app populates the app with prices, quantities and transaction fees.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 53 of 117 PageID #: 115

EXHIBIT 3

53

Note below, with the airplane mode turned on to deprive the Coinbase Wallet app access
to the Coinbase infrastructure results in a very different outcome when one attempts to
perform the send transaction

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 54 of 117 PageID #: 116

EXHIBIT 3

54

An error dialog is given after the “continue” button is depressed.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 55 of 117 PageID #: 117

EXHIBIT 3

55

A. at least one of a

first principal
data or a second
principal data;

First principle data
A transaction fee provided by the Client to pay for sending a transaction.

Note: Before any transaction instructions are processed, the fee payer account balance will
be deducted to pay for transaction fees. If the fee payer balance is not sufficient to cover
transaction fees, the transaction will be dropped by the cluster. If the balance was
sufficient, the fees will be deducted whether the transaction is processed successfully or
not. In fact, if any of the transaction instructions return an error or violate runtime
restrictions, all account changes *except* the transaction fee deduction will be rolled back.

https://solanacookbook.com/core-concepts/transactions.html#fees

https://jstarry.notion.site/Transaction-Fees-f09387e6a8d84287aa16a34ecb58e239

B. a reference to at
least one of a
first data source
or a second data
source; and

First data source
The current lampoons per signature

Each validator uses signatures per slot (SPS) to estimate network congestion and SPS
target to estimate the desired processing capacity of the cluster. The validator learns the
SPS target from the genesis config, whereas it calculates SPS from recently processed
transactions. The genesis config also defines a target lamports_per_signature, which is the
fee to charge per signature when the cluster is operating at SPS target.
https://docs.solana.com/implemented-proposals/transaction-fees#congestion-driven-fees

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 56 of 117 PageID #: 118

https://solanacookbook.com/core-concepts/transactions.html#fees
https://jstarry.notion.site/Transaction-Fees-f09387e6a8d84287aa16a34ecb58e239
https://docs.solana.com/implemented-proposals/transaction-fees#congestion-driven-fees

EXHIBIT 3

56

Note that the Client uses the JSON RPC API to query the cluster for the current fee
parameters. getFeeForMessage
https://docs.solana.com/developing/clients/jsonrpc-api#getfeeformessage

Second data source
The portion of the transaction fee payable to the Leader. 50% of each transaction fee is
burned, with the remaining fee retained by the validator that processes the transaction.
https://docs.solana.com/inflation/terminology#effective-inflation-rate-

C. an expiration
timestamp,

1. The transaction needs to be performed within a timeframe.

A transaction includes a recent blockhash to prevent duplication and to give transactions
lifetimes. Any transaction that is completely identical to a previous one is rejected, so
adding a newer blockhash allows multiple transactions to repeat the exact same action.
Transactions also have lifetimes that are defined by the blockhash, as any transaction
whose blockhash is too old will be rejected.

https://docs.solana.com/developing/programming-model/transactions#recent-blockhash

A blockhash contains a 32-byte SHA-256 hash. It is used to indicate when a client last
observed the ledger. Validators will reject transactions when the blockhash is too old.

https://docs.solana.com/developing/programming-model/transactions#blockhash-format

Source Code
Calculation of blockhash as part of transaction creation.
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L656

2. The Leader Validator processes the disbursement amount on receipt of the voting
transaction.

Before any transaction instructions are processed, the fee payer account balance will be
deducted to pay for transaction fees. If the fee payer balance is not sufficient to cover
transaction fees, the transaction will be dropped by the cluster. If the balance was
sufficient, the fees will be deducted whether the transaction is processed successfully or
not. In fact, if any of the transaction instructions return an error or violate runtime
restrictions, all account changes *except* the transaction fee deduction will be rolled
back.

https://solanacookbook.com/core-concepts/transactions.html#fees

https://jstarry.notion.site/Transaction-Fees-f09387e6a8d84287aa16a34ecb58e239

Note the following.

The description of the patent allows for the terms to define a point in time ‘on or after the
expiration timestamp or at a time or upon an event as defined by the terms…’. In this
instance the event is the reception of the transaction for processing.

Patent references:

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 57 of 117 PageID #: 119

https://docs.solana.com/developing/clients/jsonrpc-api#getfeeformessage
https://docs.solana.com/inflation/terminology#effective-inflation-rate-
https://docs.solana.com/developing/programming-model/transactions#recent-blockhash
https://docs.solana.com/developing/programming-model/transactions#blockhash-format
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L656
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L656
https://solanacookbook.com/core-concepts/transactions.html#fees
https://jstarry.notion.site/Transaction-Fees-f09387e6a8d84287aa16a34ecb58e239

EXHIBIT 3

57

[0123] 22. On or after the expiration timestamp or at a time or upon an event as defined
by the terms, and before the lock time of the complete refund transaction record, …

[0186] 21. On or after the expiration timestamp, or at a time or upon an event as defined
by the terms, and before the lock time of the complete refund transaction record, ...

iii. a first computer
processor
coupled to the
first memory
and the first
network
interface, the
first computer
processor
configured to:

The hardware device running the App (First Client as part of the Facilitator) such as a
computer or mobile phone.

A. read the first
private key from
the first memory

The hardware device running the Coinbase Wallet software on a computer or mobile
phone. Coinbase Wallet app requesting verification to access (read) the private key to
authorize transaction.

RPC Source Code
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654

Validator Code Reference

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 58 of 117 PageID #: 120

https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654

EXHIBIT 3

58

https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L17

B. compute a first
cryptographic
signature from
the first private
key;

The hardware device running the Coinbase Wallet software on a computer or mobile
phone. Coinbase Wallet app requesting verification to access (read) the private key to
calculate a signature to authorize transaction.

RPC Source Code
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L129
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L813
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654

Validator Code Reference
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39

C. create an inchoate
data record
comprising:

The App (First Client as part of the Facilitator) creates a transaction message to be sent
to the Solana Network. RPC JSON API calls are defined to allow interaction with the
Solana Network. The App constructs the following RPC message.

sendTransaction

Object - The transaction object

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 59 of 117 PageID #: 121

https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L17
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L17
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L129
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L129
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L813
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L813
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39

EXHIBIT 3

59

1. header - The message header contains three unsigned 8-bit values. The first
value is the number of required signatures in the containing transaction. The
second value is the number of those corresponding account addresses that are
read-only. The third value in the message header is the number of read-only
account addresses not requiring signatures.

2. Account addresses - The addresses that require signatures appear at the
beginning of the account address array, with addresses requesting write
access first and read-only accounts following. The addresses that do not
require signatures follow the addresses that do, again with read-write
accounts first and read-only accounts following.

3. Blockhash - A blockhash contains a 32-byte SHA-256 hash. It is used to
indicate when a client last observed the ledger. Validators will reject
transactions when the blockhash is too old

4. Instructions - An instruction contains a program id index, followed by a
compact-array of account address indexes, followed by a compact-array of
opaque 8-bit data. The program id index is used to identify an on-chain
program that can interpret the opaque data. The program id index is an
unsigned 8-bit index to an account address in the message's array of account
addresses. The account address indexes are each an unsigned 8-bit index into
that same array.

Official Documentation Reference
https://docs.solana.com/developing/programming-model/transactions
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction

RPC Code Reference
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L648

Validator Code Reference
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L11

I. a commit input
for receiving a
commit data
from a commit
transaction;

The commit input is the primary account address which will pay the transaction fee.

Transactions are required to have at least one account which has signed the transaction
and is writable. Writable signer accounts are serialized first in the list of transaction
accounts and the first of these accounts is always used as the "fee payer".

Note that the Client can use the JSON RPC API to query the cluster for the current fee
parameters. (getFeeForMessage) to determine the total fee payable to ensure that the
paying account has the required amount to pay.
https://docs.solana.com/developing/clients/jsonrpc-api#getfeeformessage

RPC Code Reference
The transaction sent to the RPC Client contains the Transaction generated by the App.
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 60 of 117 PageID #: 122

https://docs.solana.com/developing/programming-model/transactions
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L648
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L648
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L11
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L11
https://docs.solana.com/developing/clients/jsonrpc-api#getfeeformessage
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640

EXHIBIT 3

60

The commit input is the primary account address which will pay the transaction fee.

The validator identity is a system account that is used to pay for all the vote transaction
fees submitted to the vote account. Because the validator is expected to vote on most valid
blocks it receives, the validator identity account is frequently (potentially multiple times
per second) signing transactions and paying fees. For this reason the validator identity
keypair must be stored as a "hot wallet" in a keypair file on the same system the validator
process is running.
https://docs.solana.com/running-validator/vote-accounts#validator-identity

Validator Code Reference
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L24
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L31

II. one or more
outputs obtained
from at least one
of the first
principal data
or the second
principal data,
and a value data
from at least one
of the first data
source or the
second data
source; and;

The output data included in the transaction message is as follows.

• The list of signatures in the message. The Validator leader will use this, along
with the clusters current lampoons per signature, to calculate the total
transaction fee.

Official Documentation Reference
https://docs.solana.com/implemented-proposals/transaction-fees#congestion-driven-fees

RPC Code Reference
The transaction sent to the RPC Client contains the Transaction generated by the App.
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640

Validator Code Reference
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L36
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39

III. The first
cryptographic
signature; and

The hardware device running the Coinbase Wallet software on a computer or mobile
phone. Coinbase Wallet app requesting verification to access (read) the private key to
calculate a signature to authorize transaction.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 61 of 117 PageID #: 123

https://docs.solana.com/running-validator/vote-accounts#validator-identity
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L24
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L24
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L31
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L31
https://docs.solana.com/implemented-proposals/transaction-fees#congestion-driven-fees
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L128
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L640
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L36
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L36
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39

EXHIBIT 3

61

The Coinbase Wallet creates a transaction message to be sent to the Coinbase Solana
Node. RPC JSON API calls are defined to allow interaction with the Solana Nodes. The
Coinbase Wallet constructs the following RPC message.

sendTransaction

Submits a signed transaction to the cluster for processing.

Before submitting, the following preflight checks are performed:

The transaction signatures are verified
The transaction is simulated against the bank slot specified by the preflight commitment.
On failure an error will be returned. Preflight checks may be disabled if desired. It is
recommended to specify the same commitment and preflight commitment to avoid
confusing behavior.
The returned signature is the first signature in the transaction, which is used to identify the
transaction (transaction id). This identifier can be easily extracted from the transaction data
before submission.

Official Documentation Reference
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction
https://docs.solana.com/developing/programming-model/transactions#signatures
https://solanacookbook.com/core-concepts/transactions.html#fees

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 62 of 117 PageID #: 124

https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction
https://docs.solana.com/developing/programming-model/transactions#signatures
https://solanacookbook.com/core-concepts/transactions.html#fees

EXHIBIT 3

62

RPC Code Reference
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L129
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L813
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654

Validator Code Reference
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39

D. publish the
inchoate data
record to at
least one of the
first client
device or the
second client
device;;

Given the Facilitator and the First Client are the same device, this clause is not necessarily
applicable. The App (First Client as part of the Facilitator) does create a transaction
message (where the signed inchoate transaction record = complete transaction record) to
the Solana Network and the Second Client.

Official Documentation Reference
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction

RPC Source Code
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935

7. b. the first client
comprises:

i. a second
memory for
storing a second
asymmetric key
pair, the second
asymmetric key
pair comprising
a second private
key and a
second public
key.

The Facilitator and the First Client are both considered to be the same device; namely the
App or mechanism that is using the Solana Network by sending a transaction. Thus, the
clause is not assessable as it is covered by the above clauses 7a.i.

ii. a second
network
interface; and

The Facilitator and the First Client are both considered to be the same device; namely the
App or mechanism that is using the Solana Network by sending a transaction. Thus, the
clause is not assessable as it is covered by the above clauses 7a.ii.

iii. a second
computer
processor
coupled to the
second memory
and the second
network
interface, the
second
computer
processor
configured to:

The Facilitator and the First Client are both considered to be the same device; namely the
App or mechanism that is using the Solana Network by sending a transaction. Thus, the
clause is not assessable as it is covered by the above clauses 7a.iii.A-E.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 63 of 117 PageID #: 125

https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L129
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L129
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L813
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L813
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L654
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935

EXHIBIT 3

63

A. read the second
private key from
the second
memory;

The Facilitator and the First Client are both considered to be the same device; namely the
App or mechanism that is using the Solana Network by sending a transaction. Thus, the
clause is not assessable as it is covered by the above clauses 7a.iii.A.

B. read the
inchoate data
record

The Facilitator and the First Client are both considered to be the same device; namely the
App or mechanism that is using the Solana Network by sending a transaction. Thus, the
clause is not assessable.

C. compute a
second
cryptographic
signature from
the second
private key;

The Facilitator and the First Client are both considered to be the same device; namely the
App or mechanism that is using the Solana Network by sending a transaction. Thus, the
clause is not assessable as it is covered by the above clauses 7a.iii.B.

D. create a
complete data
record
comprising:

I. the commit
input;

The Facilitator and the First Client are both considered to be the same device; namely the
App or mechanism that is using the Solana Network by sending a transaction. Thus, the
clause is not assessable as it is covered by the above clauses 7a.iii.C.

II. the output data; The Facilitator and the First Client are both considered to be the same device; namely the
App or mechanism that is using the Solana Network by sending a transaction. Thus, the
clause is not assessable as it is covered by the above clauses 7a.iii.C.

III. the first
cryptographic
signature, and

The Facilitator and the First Client are both considered to be the same device; namely the
App or mechanism that is using the Solana Network by sending a transaction. Thus, the
clause is not assessable as it is covered by the above clauses 7a.iii.C.

IV. the second
cryptographic
signature,

The Facilitator and the First Client are both considered to be the same device; namely the
App or mechanism that is using the Solana Network by sending a transaction. Thus, the
clause is not assessable as it is covered by the above clauses 7a.iii.C.

E. create a
transaction by
submitting the
complete data
record to the
transfer
mechanism;

The Coinbase Wallet creates a transaction message to be sent to the Coinbase Solana
Node. RPC JSON API calls are defined to allow interaction with the Solana Nodes.

Only the First Client is required to sign the transaction and so once signed the RPC JSON
API call ‘sendTransaction’ is considered to be a complete data record and is broadcast to
the Leader Validator via the Coinbase Solana Node.

Official Documentation Reference
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction

RPC Source Code
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935

The Leader Validator, as the second client, uses the transaction (completed disbursement
transaction record) and other transactions in the TX Pool to create a Block Transaction.
The Block is broadcast to all network participants for consensus and recording to the
distributed ledger.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 64 of 117 PageID #: 126

https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935

EXHIBIT 3

64

Clients send transactions to any validator's Transaction Processing Unit (TPU) port. If the
node is in the validator role, it forwards the transaction to the designated leader. If in the
leader role, the node bundles incoming transactions, timestamps them creating an entry,
and pushes them onto the cluster's data plane. Once on the data plane, the transactions
are validated by validator nodes, effectively appending them to the ledger.

https://docs.solana.com/cluster/overview#sending-transactions-to-a-cluster

7. c. the second client
comprises:

i. a third memory
for storing a
third
asymmetric key
pair, the third
asymmetric key
pair comprising
a third private
key and a third
public key;

The Validator Note (including the Leader Validator) requires an account (with key pair) in
order to sign the produced blocks.

7 System Architecture
7.1 Components
7.1.1 Leader, Proof of History generator
The Leader is an elected Proof of History generator. It consumes arbitrary user
transactions and outputs a Proof of History sequence of all the transactions that
guarantee a unique global order in the system. After each batch of transactions the Leader
outputs a signature of the state that is the result of running the transactions in that order.
This signature is signed with the identity of the Leader.

https://cryptorating.eu/whitepapers/Solana/solana-whitepaper-en.pdf

Vote Authority#
The vote authority keypair is used to sign each vote transaction the validator node wants
to submit to the cluster. This doesn't necessarily have to be unique from the validator
identity, as you will see later in this document. Because the vote authority, like the
validator identity, is signing transactions frequently, this also must be a hot keypair on the
same file system as the validator process.

https://docs.solana.com/running-validator/vote-accounts#vote-authority

Source Code
https://github.com/solana-labs/solana/blob/master/validator/src/main.rs#L2999

ii. a third network
interface; and

The Validator Nodes require network interface in order for them to participate in Block
Production and network consensus.

Networking#
Internet service should be at least 300Mbit/s symmetric, commercial. 1GBit/s preferred

Port Forwarding#
The following ports need to be open to the internet for both inbound and outbound

It is not recommended to run a validator behind a NAT. Operators who choose to do so
should be comfortable configuring their networking equipment and debugging any
traversal issues on their own.

Required#
8000-10000 TCP/UDP - P2P protocols (gossip, turbine, repair, etc). This can be limited
to any free 12 port range with --dynamic-port-range

https://docs.solana.com/running-validator/validator-reqs#networking

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 65 of 117 PageID #: 127

https://docs.solana.com/cluster/overview#sending-transactions-to-a-cluster
https://cryptorating.eu/whitepapers/Solana/solana-whitepaper-en.pdf
https://docs.solana.com/running-validator/vote-accounts#vote-authority
https://github.com/solana-labs/solana/blob/master/validator/src/main.rs#L2999
https://docs.solana.com/running-validator/validator-reqs#networking

EXHIBIT 3

65

iii. a third computer
processor
coupled to the
third memory
and the third
network
interface, the
third computer
processor
configured to
read the third
private key from
the third
memory; and

The Solana Network Node running the Validator software.

https://docs.solana.com/running-validator/validator-reqs

wherein the at least one of
the first client device or the
second client device signs
the inchoate data record
and saves a copy of the
inchoate data record on at
least one of the first client
device or the second client
device.

The Coinbase Wallet creates a transaction message to be sent to the Coinbase Solana
Node. RPC JSON API calls are defined to allow interaction with the Solana Nodes.

Only the First Client is required to sign the transaction and so once signed the RPC JSON
API call ‘sendTransaction’ is considered to be a complete data record and is broadcast to
the Leader Validator via the Coinbase Solana Node.

Official Documentation Reference
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction

RPC Source Code
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935

Validator Code Reference
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38
https://github.com/solana-
labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39

A copy of the inchoate data record is (optionally, as described in pgs 11 and 15 of the
general description text of the patent) saved on the Leader Validator node.

wherein the transfer
mechanism comprising a
decentralized digital
currency that comprises a
distributed ledger that
enables processing the
transaction between the
first client device and the
second client device without
the need of a trusted central
authority,

A SOL is the name of Solana's native token, which can be passed to nodes in a Solana
cluster in exchange for running an on-chain program or validating its output. The system
may perform micropayments of fractional SOLs, which are called lamports.

https://docs.solana.com/introduction#what-are-sols

wherein the transaction is
created by broadcasting the
complete data record for
transmitting and receiving
among network participants
in the computer network for
recording in the distributed
ledger, and

The Coinbase Wallet creates a transaction message to be sent to the Coinbase Solana
Node. RPC JSON API calls are defined to allow interaction with the Solana Nodes.

Only the First Client is required to sign the transaction and so once signed the RPC JSON
API call ‘sendTransaction’ is considered to be a complete data record and is broadcast to
the Leader Validator via the Coinbase Solana Node.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 66 of 117 PageID #: 128

https://docs.solana.com/running-validator/validator-reqs
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L38
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39
https://github.com/solana-labs/solana/blob/master/programs/vote/src/vote_transaction.rs#L39
https://docs.solana.com/introduction#what-are-sols

EXHIBIT 3

66

Official Documentation Reference
https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction

RPC Source Code
https://github.com/solana-
labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935

Validator Code Reference
https://github.com/solana-labs/solana/blob/master/gossip/src/cluster_info.rs#L1087

wherein at least one of the
computer device, the first
client device, or the second
client device verifies the
recording of the complete
data record in the
distributed ledger by
observing an external state

The Coinbase Wallet shows the transaction history.

The Coinbase Wallet shows the transaction details along with a link to the Solana explorer.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 67 of 117 PageID #: 129

https://docs.solana.com/developing/clients/jsonrpc-api#sendtransaction
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935
https://github.com/solana-labs/solana/blob/master/client/src/nonblocking/rpc_client.rs#L935
https://github.com/solana-labs/solana/blob/master/gossip/src/cluster_info.rs#L1087

EXHIBIT 3

67

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 68 of 117 PageID #: 130

EXHIBIT 3

68

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 69 of 117 PageID #: 131

EXHIBIT 3

69

Claim Chart U.S. Patent No. 11,196,566 (the “’566 Patent”) Coinbase
Claim 1
A computing device for processing
a transaction between a first client
device, and a second client device
via a transfer mechanism, the
transfer mechanism comprising a
decentralized digital currency

Coinbase Products & Services
The transfer of a NFT (on the Ethereum network) from one party to
another.

The computing device comprising: The Computing Device | Facilitator consists of:
• the Coinbase (Owned, managed or offered) Ethereum Validator Full

Nodes; and
• the Coinbase (Owned, managed or offered) Ethereum supporting

Archive Nodes and Light Nodes; and
• the Coinbase (Ethereum compatible) wallets;

Where both the Coinbase Nodes and the Coinbase Ethereum compatible end
user wallet device are networked to have direct or indirect communication with
each other.

Client Device
The Second Client is the end user device that accepts an offer for an NFT.
The First Client is the end user device that authorises an NFT to be offered for
sale.
Three (3) Client instances have been identified that represent various
implementations that exist.

1. Client is a device running an application that uses a Javascript
Ethereum Provider API (as per EIP-1193) such as web3.js or
ethers.js. This device will also use a key storage wallet with EIP-191
or EIP-712 signing support (such as Metamask/Coinbase Wallet) to
send an NFT transactions. The use of an EIP-1193 based Ethereum
Provider API or EIP-191/EIP-712 signing support means the Client
is considered to be part of the Ethereum Network.
http://eips/ethereum.org/EIPS/eip-191
http://eips/ethereum.org/EIPS/eip-712
http://eips/ethereum.org/EIPS/eip-1193

2. Client representative of Eth Client Browser or Command Line

Interface to create or send an NFT. The Client is considered to be
part of the Ethereum Network.

3. Client is a device running an application that uses a Javascript

Ethereum Provider API (as per EIP-1193) such as web3.js or
ethers.js. This device will also use a key storage wallet. This device
uses private key management in order to sign transactions

The Patent allows for, and the Claims do not prevent, the Computing System
from being, or including, the Client. This is detailed in the Patent description
[0055].

FIG. 1 (see Figure 16) depicts a typical embodiment for practicing the
invention—especially for use with a distributed transfer mechanism—where the
clients, transfer mechanism, facilitator, and data source are distinct
participants. However, the depicted arrangement is not the only one

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 70 of 117 PageID #: 132

http://eips/ethereum.org/EIPS/eip-191
http://eips/ethereum.org/EIPS/eip-712
http://eips/ethereum.org/EIPS/eip-1193

EXHIBIT 3

70

contemplated by the invention. In an alternate embodiment, the facilitator
provides some or all aspects of the transfer mechanism. In another
embodiment, the facilitator comprises some or all aspects of a client. For
example, part or all of a client's data store, the ability to initiate or accept
offers, etc., could be “embedded” in the facilitator, thereby enabling the
facilitator to operate as a client itself (e.g., one controlled by the owners of the
facilitator, or on behalf of a third party who has entrusted control to the
facilitator). In yet another embodiment, the facilitator comprises the data
source. Many configurations are contemplated by the invention are possible,
and will become apparent to one skilled in the art.

In addition, paragraph 0055 reads as follows:

It will become apparent to one skilled in the art that aspects of each of
embodiments above may be commingled. For example, the first client could
transmit the offer to the facilitator, where the second client could find and
retrieve it. As mentioned above, aspects of one or both of the first client and the
second client could coincide with the facilitator allowing many of the above
steps to be omitted as redundant where the facilitator is entrusted to act as a
proxy for or on behalf of one of the first party and the second party. The
facilitator could contain aspects of one of the clients, but not the other, in
which case the extra-facilitator client would optionally independently validate
transaction records it received from the facilitator before signing them, etc. In
such embodiments, the facilitator typically comprises a means to control
aspects of a client it comprises via an interface such as a web-based user
interface (UI), an application programmer's interface (API), etc.

• a memory for storing a
first asymmetric key
pair, the first
asymmetric key pair
comprising a first
private key and a first
public key;

The Client device hosting the API software/libraries (used by an App), as part
of the Computing Device, need a computer hardware/software combination to
run, namely:

• Memory (RAM), used in the computing device (such as a computer
or mobile phone).

• Transaction record sector (stores transactions that haven't been
submitted to the blockchain yet) kept via the crypto software wallets

Where the Client running the App and Wallet software, contains:
• a first key pair sector which is generated and stored in the wallet

software
• The asymmetric key pair generated and/or stored consists of a first

private key and a first public key – all found and manipulated via the
wallet software.

• The wallet software connects via the public key or the key pair, and
authorizes (signs) the transaction with the private key of the key pair.

Where the Client interacts with the Eth Client Browser or Command Line
Interface to transaction creation, contains:

• a first key pair sector which is generated and stored on the device
• The asymmetric key pair stored consists of a first private key and a

first public key.

Where the Client interacts with private Apps with Private key management in
order to sign transactions, contains:

• a first key pair sector which is stored in the key management
vault/software

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 71 of 117 PageID #: 133

EXHIBIT 3

71

• The asymmetric key pair generated and/or stored consists of a first
private key and a first public key – all found and manipulated via the
key management vault/software.

• The key management vault/software connects via the public key or
the key pair, and authorizes (signs) the transaction with the private
key of the key pair.

• a network interface for

receiving terms, the
terms comprising:

The Client device requires a network interface in order to connect a wallet to
the marketplace to offer the NFT for sale.

1. Click on the ‘Sign In’ button top RHS.

2. Selecting ‘Coinbase Wallet’ prompts the user to connect to the

website.

3. Attempting to connect without a network interface (as shown with no

Wifi connected).

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 72 of 117 PageID #: 134

EXHIBIT 3

72

4. The user is not connected to the NFT marketplace and is instead

requested to connect wallet.

5. When connected to a network the user creates a username and

password that is associated from the wallet signature.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 73 of 117 PageID #: 135

EXHIBIT 3

73

6. The user is logged in as indicated at the top RHS icon.

o at least one

of a first
principal
data or a
second
principal
data;

First principle data

The first principle data is the value represented/encapsulated by the NFT.
Examples include but are not limited to art, gifs, videos, files, documents,
deeds representing a real world asset, agreements.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 74 of 117 PageID #: 136

EXHIBIT 3

74

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed
831f9599/439

Second principle data

The seller will define a minimum or market price that they are willing to sell
the NFT for.

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed
831f9599/439

o a reference
to at least
one of a first
data source
or a second

First data source

The NFT smart contract which contains a metadata URI link describes the
value.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 75 of 117 PageID #: 137

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439
https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439
https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439
https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439

EXHIBIT 3

75

data source;
and

Metadata URI Link
/// @notice A distinct Uniform Resource Identifier
(URI) for a given asset.
/// @dev Throws if `_tokenId` is not a valid NFT.
URIs are defined in RFC
/// 3986. The URI may point to a JSON file that
conforms to the "ERC721
/// Metadata JSON Schema".
function tokenURI(uint256 _tokenId) external view
returns (string);
https://eips.ethereum.org/EIPS/eip-721

Second data source

The NFT smart contract which contains a royalty payment fee as per ERC2981
for consideration of the disbursement function.

Royalty Info
/// @notice Called with the sale price to determine
how much royalty is owed and to /// whom.
/// @param _tokenId - the NFT asset queried for
royalty information
/// @param _salePrice - the sale price of the NFT
asset specified by _tokenId
/// @return receiver - address of who should be sent
the royalty payment
/// @return royaltyAmount - the royalty payment
amount for _salePrice
function royaltyInfo(
 uint256 _tokenId,
 uint256 _salePrice
) external view returns (
 address receiver,
 uint256 royaltyAmount
);
https://eips.ethereum.org/EIPS/eip-2981

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 76 of 117 PageID #: 138

https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-2981

EXHIBIT 3

76

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed
831f9599/439

Indicates that 10% of sale goes to the Creator.

o an expiration
timestamp;

The approval by the NFT owner to sell or allow a transfer of ownership of the
NFT is implied to be infinite or until accepted by a purchaser as no explicit
deadline is mandated.

The approve function as defined by the EIP-721 is as follows.

/// @notice Change or reaffirm the approved address for an
NFT
/// @dev The zero address indicates there is no approved
address. Throws unless `msg.sender` is the current NFT
owner, or an authorized operator of the current owner.
/// @param _approved The new approved NFT controller
/// @param _tokenId The NFT to approve
function approve(address _approved, uint256 _tokenId)
external payable;

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 77 of 117 PageID #: 139

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439
https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439

EXHIBIT 3

77

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed
831f9599/439

Shows an expiration with the Listing ending Sep 17 at 11:07am.

Note that the expiration period can also be represented through an event which
in this case can be a subsequent all to the approve function to change the
approved address back to the NFT owner. The description of the patent allows
for the terms to define a point in time ‘on or after the expiration timestamp or at
a time or upon an event as defined by the terms…’. In this instance the event is
the reception of the transaction for processing.

Patent references:
[0123] 22. On or after the expiration timestamp or at a time or upon an event
as defined by the terms, and before the lock time of the complete refund
transaction record, …

[0186] 21. On or after the expiration timestamp, or at a time or upon an event
as defined by the terms, and before the lock time of the complete refund
transaction record, ...

Also note that there is a draft EIP-4494 which seeks to change this infinite time
to a specified deadline expiration. This demonstrates that the ‘approve’
function does have a time component albeit undefined and implied.

https://eips.ethereum.org/EIPS/eip-4494

/// @notice Function to approve by way of owner signature
/// @param spender the address to approve
/// @param tokenId the index of the NFT to approve the
spender on
/// @param deadline a timestamp expiry for the permit
/// @param sig a traditional or EIP-2098 signature

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 78 of 117 PageID #: 140

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439
https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439
https://eips.ethereum.org/EIPS/eip-4494

EXHIBIT 3

78

 function permit(address spender, uint256 tokenId, uint256
deadline, bytes memory sig) external;

• a computer processor
coupled to the memory
and the network
interface, the computer
processor configured
to:

The hardware device, hosting the API software/libraries (used by an App), such
as a computer or mobile phone.

i. read the first private
key from the memory;

The hardware device, hosting the API software/libraries (used by an App), such
as a computer or mobile phone. The App requires the user to authenticate
themselves via the Wallet private key either before using the App or for sign
individual transactions. The private key is encrypted on the device and
accessed for reading (and subsequently used to calculate a transaction
signature) by the app/wallet from the passcode/protection mechanism of the
app/wallet.

Coinbase Wallet requesting confirmation to access the private key to authorise
and sign the transaction.

ii. compute a first
cryptographic
signature from the first
private key;

The hardware device, hosting the API software/libraries (used by an App), such
as a computer or mobile phone. The App requires the user to authenticate
themselves via a Wallet before using the App.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 79 of 117 PageID #: 141

EXHIBIT 3

79

Coinbase Wallet requesting confirmation to access the private key to authorise,
calculate and sign the transaction.

eth_SignTransaction

web3.eth.signTransaction(transactionObject, address [, callback])
Signs a transaction.

Parameters
Object - The transaction data to sign. See web3.eth.sendTransaction() for more.
String - Address to sign transaction with.
Function - (optional) Optional callback, returns an error object as first
parameter and the result as second.
https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#signtransaction

iii. create an inchoate data
record comprising:

While the Computing Device and the First Client device are the same device,
the Inchoate Transaction is created for the NFT seller to approve an account
(typically a smart contract account) to transfer ownership of the NFT when the
terms are met.

The App (First Client as part of the Computing Device) creates a transaction
message to be sent to the Ethereum Network. RPC JSON API calls are defined
to allow interaction with the Ethereum network. The App constructs the
following message which is aligned with this standard.

eth_sendTransaction (EIP1559)
Creates new message call transaction or a contract creation, if the data field
contains code.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 80 of 117 PageID #: 142

https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#signtransaction

EXHIBIT 3

80

Object - The transaction object

1. from - String|Number: The address for the sending account. Uses the
web3.eth.defaultAccount property, if not specified. Or an address or
index of a local wallet in web3.eth.accounts.wallet.

2. to - String: (optional) The destination address of the message, left
undefined for a contract-creation transaction.

3. value - Number|String|BN|BigNumber: (optional) The value
transferred for the transaction in wei, also the endowment if it’s a
contract-creation transaction.

4. gas - Number: (optional, default: To-Be-Determined) The amount of
gas to use for the transaction (unused gas is refunded).

5. gasPrice - Number|String|BN|BigNumber: (optional) The price of
gas for this transaction in wei, defaults to web3.eth.gasPrice.

6. type - Number|String|BN|BigNumber: (optional) A positive unsigned
8-bit number between 0 and 0x7f that represents the type of the
transaction.

7. maxFeePerGas - Number|String|BN: (optional, defaulted to (2 *
block.baseFeePerGas) + maxPriorityFeePerGas) The maximum fee
per gas that the transaction is willing to pay in total

8. maxPriorityFeePerGas - Number|String|BN (optional, defaulted to 1
Gwei) The maximum fee per gas to give miners to incentivize them
to include the transaction (Priority fee)

9. accessList - List of hexstrings (optional) a list of addresses and
storage keys that the transaction plans to access

10. data - String: (optional) Either a ABI byte string containing the data
of the function call on a contract, or in the case of a contract-creation
transaction the initialisation code.

11. nonce - Number: (optional) Integer of the nonce. This allows to
overwrite your own pending transactions that use the same nonce.

12. chain - String: (optional) Defaults to mainnet.
13. hardfork - String: (optional) Defaults to london.

Returns

1. DATA, 32 Bytes - the transaction hash, or the zero hash if the
transaction is not yet available.

https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#sendtransaction

The App (First Client as part of the Computing Device) initiates a smart
contract call populating the data field of the above message.

From: https://eips.ethereum.org/EIPS/eip-721

/// @notice Change or reaffirm the approved address for an
NFT
/// @dev The zero address indicates there is no approved
address. Throws unless `msg.sender` is the current NFT
owner, or an authorized operator of the current owner.
/// @param _approved The new approved NFT controller
/// @param _tokenId The NFT to approve
function approve(address _approved, uint256 _tokenId)
external payable;

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 81 of 117 PageID #: 143

https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#sendtransaction
https://eips.ethereum.org/EIPS/eip-721

EXHIBIT 3

81

• a commit input for
receiving a commit
data from a commit
transaction;

The commit input is the offer to sell the NFT indicated by an ‘approve’
function call.

From: https://eips.ethereum.org/EIPS/eip-721

/// @notice Change or reaffirm the approved address for an
NFT
/// @dev The zero address indicates there is no approved
address. Throws unless `msg.sender` is the current NFT
owner, or an authorized operator of the current owner.
/// @param _approved The new approved NFT controller
/// @param _tokenId The NFT to approve
function approve(address _approved, uint256 _tokenId)
external payable;

• one or more output
data obtained from at
least one of the first
principal data or the
second principal data,
and a value data from
at least one of the first
data source or the
second data source;
and

The output data includes:
• The signed acceptance of the offered NFT based on the value

description of the Metadata URI link.
• The disbursement amount to the seller and the originator based on

the royalty fee definition of the NFT.

• the first cryptographic
signature; and

The hardware device, hosting the API software/libraries (used by an App), such
as a computer or mobile phone. The App requires the user to authenticate
themselves via a Wallet before using the App.

Coinbase Wallet requesting confirmation to access the private key to authorise,
calculate and sign the transaction.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 82 of 117 PageID #: 144

https://eips.ethereum.org/EIPS/eip-721

EXHIBIT 3

82

eth_SignTransaction

web3.eth.signTransaction(transactionObject, address [, callback])
Signs a transaction.

Parameters
Object - The transaction data to sign. See web3.eth.sendTransaction() for more.
String - Address to sign transaction with.
Function - (optional) Optional callback, returns an error object as first
parameter and the result as second.
https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#signtransaction

iv. publish the inchoate
data record to at least
one of the first client
device or the second
client device,

The published Inchoate Data Record is the offered NFT for sale on a
marketplace. The following is an example from the Coinbase NFT
Marketplace.

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed
831f9599/439

wherein the decentralized digital
currency comprises a distributed
ledger that enables processing the
transaction between the first client
device and the second client device
without the need for a trusted
central authority,

Ether is used as the decentralised currency. The Ethereum network maintains a
distributed ledger without the need for a trusted central authority.

From the Ethereum yellow paper.
2.1. Value. In order to incentivise computation within the network, there needs
to be an agreed method for transmitting value. To address this issue, Ethereum
has an intrinsic currency, Ether, known also as ETH and sometimes referred to
by the Old English ¯D.

https://ethereum.github.io/yellowpaper/paper.pdf

wherein the inchoate data record
is used by at least one of the first
client device or the second client
device to create a complete data

The NFT approved for sale is accepted by the buyer with the safeTransfer
function call to transfer ownership to the buyer.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 83 of 117 PageID #: 145

https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#signtransaction
https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439
https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439
https://ethereum.github.io/yellowpaper/paper.pdf

EXHIBIT 3

83

record and to create the
transaction by broadcasting the
complete data record for
transmitting and receiving among
network participants in the
computer network for recording in
the distributed ledger,

The App (Second Client as part of the Facilitator) creates a transaction message
to be sent to the Ethereum Network. RPC JSON API calls are defined to allow
interaction with the Ethereum network. The App constructs the following
message which is aligned with this standard.

eth_sendTransaction (EIP1559)
Creates new message call transaction or a contract creation, if the data field
contains code.

Object - The transaction object

1. from - String|Number: The address for the sending account. Uses the
web3.eth.defaultAccount property, if not specified. Or an address or
index of a local wallet in web3.eth.accounts.wallet.

2. to - String: (optional) The destination address of the message, left
undefined for a contract-creation transaction.

3. value - Number|String|BN|BigNumber: (optional) The value
transferred for the transaction in wei, also the endowment if it’s a
contract-creation transaction.

4. gas - Number: (optional, default: To-Be-Determined) The amount of
gas to use for the transaction (unused gas is refunded).

5. gasPrice - Number|String|BN|BigNumber: (optional) The price of
gas for this transaction in wei, defaults to web3.eth.gasPrice.

6. type - Number|String|BN|BigNumber: (optional) A positive unsigned
8-bit number between 0 and 0x7f that represents the type of the
transaction.

7. maxFeePerGas - Number|String|BN: (optional, defaulted to (2 *
block.baseFeePerGas) + maxPriorityFeePerGas) The maximum fee
per gas that the transaction is willing to pay in total

8. maxPriorityFeePerGas - Number|String|BN (optional, defaulted to 1
Gwei) The maximum fee per gas to give miners to incentivize them
to include the transaction (Priority fee)

9. accessList - List of hexstrings (optional) a list of addresses and
storage keys that the transaction plans to access

10. data - String: (optional) Either a ABI byte string containing the data
of the function call on a contract, or in the case of a contract-creation
transaction the initialisation code.

11. nonce - Number: (optional) Integer of the nonce. This allows to
overwrite your own pending transactions that use the same nonce.

12. chain - String: (optional) Defaults to mainnet.
13. hardfork - String: (optional) Defaults to london.

Returns

2. DATA, 32 Bytes - the transaction hash, or the zero hash if the
transaction is not yet available.

https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#sendtransaction

The App (Second Client as part of the Facilitator) initiates a smart contract call
populating the data field of the above message.

From: https://eips.ethereum.org/EIPS/eip-721

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 84 of 117 PageID #: 146

https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#sendtransaction
https://eips.ethereum.org/EIPS/eip-721

EXHIBIT 3

84

ERC-721 standardizes a safe transfer function safeTransferFrom
(overloaded with and without a bytes parameter) and an unsafe function
transferFrom. Transfers may be initiated by:

• The owner of an NFT
• The approved address of an NFT
• An authorized operator of the current owner of an NFT

wherein at least one of the first
client device or the second client
device signs the inchoate data
record and saves a copy of the
inchoate data record on at least
one of the first client device or the
second client device; and

The Second Client requires the buyer to authenticate themselves via a Wallet
before using the App. The wallet private key is used to sign the transaction for
the EVM smart contract call.

Coinbase Wallet requesting confirmation to access the private key to authorise
and sign the transaction.

Note that it is not mandatory for the inchoate data record to be saved by the
device as it is optional as described in the Patent general description.

[0095] 11. The second client creates the complete commit transaction record
by signing the inchoate commit transaction record and optionally saves a copy
in non-transitory memory, the complete commit transaction record comprising:

[0111] 15. Optionally, the first client saves a copy of the complete commit
transaction record in non-transitory memory.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 85 of 117 PageID #: 147

EXHIBIT 3

85

wherein the at least one of the
computing device, the first client
device, or the second client device
verifies the recording of the
complete data record in the
distributed ledger by observing an
external state.

The Second Client verifies that the Complete Data Record (Transaction) has
been recorded by the network as a complete transaction record. In the below
image this is shown in the ‘History’ tab with the transaction shown as
confirmed.

https://help.coinbase.com/en/coinbase/trading-and-funding/trade-on-dex/check-
transaction-status

When a transaction is sent, a transaction hash is received. This can be used to
retrieve transaction details. Use the JSON RPC API command
getTransactionByHash({transaction hash}) to retrieve the transaction details.
The returned blockNumber should be non-null if the transaction has been
mined and included into a block.

Then call JSON RPC API eth_blockNumber to get the current block height.
The number of confirmations is the eth_blockNumber result minus the
eth_getTransaction blockNumber result.

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_blocknumber
https://github.com/ethereum/wiki/wiki/JSON-RPC#getTransactionByHash

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 86 of 117 PageID #: 148

https://help.coinbase.com/en/coinbase/trading-and-funding/trade-on-dex/check-transaction-status
https://help.coinbase.com/en/coinbase/trading-and-funding/trade-on-dex/check-transaction-status
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_blocknumber
https://github.com/ethereum/wiki/wiki/JSON-RPC#getTransactionByHash

EXHIBIT 3

86

Claim Chart U.S. Patent No. 11,196,566 (the “’566 Patent”) Coinbase

Claim 2 Coinbase Products & Services
The transfer of a NFT (on the Ethereum network) from one party to
another.

The device of claim 1, where:
the computer processor is configured
to obtain the one or more output data
based on:

The Computing Device | Facilitator consists of:
• the Coinbase (Owned, managed or offered) Ethereum

Validator Full Nodes; and
• the Coinbase (Owned, managed or offered) Ethereum

supporting Archive Nodes and Light Nodes; and
• the Coinbase (Ethereum compatible) wallets;

Where both the Coinbase Nodes and the Coinbase Ethereum compatible
end user wallet device are networked to have direct or indirect
communication with each other.

the first principal data; and the value
data from the first data source.

The Validator node, as part of processing the received complete
transaction, disburses the value by sending the NFT (with the metadata
link) to the recipient.
The Validator node, as part of processing the received complete
transaction, disburses the royalty fee to the NFT originator address.

Metadata URI Link
/// @notice A distinct Uniform Resource Identifier (URI) for a given
asset.
/// @dev Throws if `_tokenId` is not a valid NFT. URIs are defined in
RFC
/// 3986. The URI may point to a JSON file that conforms to the
"ERC721
/// Metadata JSON Schema".
function tokenURI(uint256 _tokenId) external view returns (string);
https://eips.ethereum.org/EIPS/eip-721

Royalty Info
/// @notice Called with the sale price to determine how much royalty is
owed and to /// whom.
/// @param _tokenId - the NFT asset queried for royalty information
/// @param _salePrice - the sale price of the NFT asset specified by
_tokenId
/// @return receiver - address of who should be sent the royalty payment
/// @return royaltyAmount - the royalty payment amount for _salePrice
function royaltyInfo(
 uint256 _tokenId,
 uint256 _salePrice
) external view returns (
 address receiver,
 uint256 royaltyAmount
);
https://eips.ethereum.org/EIPS/eip-2981

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 87 of 117 PageID #: 149

https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-2981

EXHIBIT 3

87

Claim Chart U.S. Patent No. 11,196,566 (the “’566 Patent”) Coinbase

Claim 7
A system for
processing a
transaction between a
first client device and
a second client device
via a transfer
mechanism the system
comprising a
computing device, the
first client device, the
second client device,
and the transfer
mechanism.

Coinbase Products & Services
The transfer of a NFT (on the Ethereum network) from one party to another.

7. a. the computing
device comprising:

i. a first
memory
comprising
for storing a
first
asymmetric
key pair, the
first
asymmetric
key pair
comprising a
first private
key and a first
public key;

The Computing Device | Facilitator consists of:
• the Coinbase (Owned, managed or offered) Ethereum Validator Full Nodes; and
• the Coinbase (Owned, managed or offered) Ethereum supporting Archive Nodes

and Light Nodes; and
• the Coinbase (Ethereum compatible) wallets;

Where both the Coinbase Nodes and the Coinbase Ethereum compatible end user wallet
device are networked to have direct or indirect communication with each other.

Client Device
The First Client is the end user device that accepts an offer for an NFT.
The Second Client is the end user device that authorises an NFT to be offered for sale.

Three (3) Client instances have been identified that represent various implementations that
exist.

1. Client is a device running an App (Coinbase Wallet) that uses a Javascript
Ethereum Provider API (as per EIP-1193) such as web3.js or ethers.js. This device
will also use a key storage wallet with EIP-191 or EIP-712 signing support (such
as Metamask/Coinbase Wallet) to send an NFT transactions. The use of an EIP-
1193 based Ethereum Provider API or EIP-191/EIP-712 signing support means the
Client is considered to be part of the Ethereum Network.
http://eips/ethereum.org/EIPS/eip-191
http://eips/ethereum.org/EIPS/eip-712
http://eips/ethereum.org/EIPS/eip-1193

2. The Computing Device and the Client are the same device where the Client is a

Client Browser or Command Line Interface on a Coinbase Ethereum Node used to
create, sign and submit NFT transactions to the Coinbase Ethereum Node for
processing.

3. Client is a device running an App (Coinbase Wallet) that uses a Javascript

Ethereum Provider API (as per EIP-1193) such as web3.js or ethers.js.. This
device will also use a key storage wallet. This device uses private key management
in order to sign transactions

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 88 of 117 PageID #: 150

http://eips/ethereum.org/EIPS/eip-191
http://eips/ethereum.org/EIPS/eip-712
http://eips/ethereum.org/EIPS/eip-1193

EXHIBIT 3

88

Where the Client running the App (Coinbase Wallet) software, as part of the Facilitator, need
a computer hardware/software combination to run, namely:

• Memory (RAM), used in the computing device (such as a computer or mobile
phone).

• Transaction record sector (stores transactions that haven't been submitted to the
blockchain yet) kept via the crypto software wallets

Where the Client running the App (Coinbase Wallet) software, contains:

• a first key pair sector which is generated and stored in the wallet software
• The asymmetric key pair generated and/or stored consists of a first private key and

a first public key – all found and manipulated via the wallet software.
• The wallet software connects via the public key or the key pair, and authorizes

(signs) the transaction with the private key of the key pair.

Where the Client interacts with the Eth Client Browser or Command Line Interface to
transaction creation, contains:

• a first key pair sector which is generated and stored on the device
• The asymmetric key pair stored consists of a first private key and a first public

key.

Where the Client interacts with App (Coinbase Wallet) with Private key management in
order to sign transactions, contains:

• a first key pair sector which is stored in the key management vault/software
• The asymmetric key pair generated and/or stored consists of a first private key and

a first public key – all found and manipulated via the key management
vault/software.

• The key management vault/software connects via the public key or the key pair,
and authorizes (signs) the transaction with the private key of the key pair.

ii. a first
network
interface for
receiving
terms, the
terms
comprising:

 The Client device requires a network interface in order to connect a wallet to the
marketplace to offer the NFT for sale.

1. Click on the ‘Sign In’ button top RHS.

2. Selecting ‘Coinbase Wallet’ prompts the user to connect to the website.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 89 of 117 PageID #: 151

EXHIBIT 3

89

3. Attempting to connect without a network interface (as shown with no Wifi
connected).

4. The user is not connected to the NFT marketplace and is instead requested to
connect wallet.

5. When connected to a network the user creates a username and password that is
associated from the wallet signature.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 90 of 117 PageID #: 152

EXHIBIT 3

90

6. The user is logged in as indicated at the top RHS icon.

A. at least one of

a first
principal data
or a second
principal
data;

First principle data

The first principle data is the value represented/encapsulated by the NFT. Examples include
but are not limited to art, gifs, videos, files, documents, deeds representing a real world asset,
agreements.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 91 of 117 PageID #: 153

EXHIBIT 3

91

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439

Second principle data

The seller will define a minimum or market price that they are willing to sell the NFT for.

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439

B. a reference to
at least one of
a first data

First data source

The NFT smart contract which contains a metadata URI link describes the value.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 92 of 117 PageID #: 154

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439
https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439

EXHIBIT 3

92

source or a
second data
source; and

Metadata URI Link
/// @notice A distinct Uniform Resource Identifier (URI) for a
given asset.
/// @dev Throws if `_tokenId` is not a valid NFT. URIs are
defined in RFC
/// 3986. The URI may point to a JSON file that conforms to
the "ERC721
/// Metadata JSON Schema".
function tokenURI(uint256 _tokenId) external view returns
(string);
https://eips.ethereum.org/EIPS/eip-721

Second data source

The NFT smart contract which contains a royalty payment fee as per ERC2981 for
consideration of the disbursement function.

Royalty Info
/// @notice Called with the sale price to determine how much
royalty is owed and to /// whom.
/// @param _tokenId - the NFT asset queried for royalty
information
/// @param _salePrice - the sale price of the NFT asset
specified by _tokenId
/// @return receiver - address of who should be sent the
royalty payment
/// @return royaltyAmount - the royalty payment amount for
_salePrice
function royaltyInfo(
 uint256 _tokenId,
 uint256 _salePrice
) external view returns (
 address receiver,
 uint256 royaltyAmount
);
https://eips.ethereum.org/EIPS/eip-2981

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 93 of 117 PageID #: 155

https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-2981

EXHIBIT 3

93

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439
Indicates that 10% of sale goes to the Creator.

C. an expiration
timestamp,

The approval by the NFT owner to sell or allow a transfer of ownership of the NFT is
implied to be infinite as no explicit deadline is configurable.

The approve function as defined by the EIP-721 is as follows.

/// @notice Change or reaffirm the approved address for an NFT
/// @dev The zero address indicates there is no approved address.
Throws unless `msg.sender` is the current NFT owner, or an authorized
operator of the current owner.
/// @param _approved The new approved NFT controller
/// @param _tokenId The NFT to approve
function approve(address _approved, uint256 _tokenId) external
payable;

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 94 of 117 PageID #: 156

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439

EXHIBIT 3

94

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439

Shows an expiration with the Listing ending Sep 17 at 11:07am.

Note that the expiration period can be represented through an event which in this case can be
a subsequent all to the approve function to change the approved address back to the NFT
owner. The description of the patent allows for the terms to define a point in time ‘on or after
the expiration timestamp or at a time or upon an event as defined by the terms…’. In this
instance the event is the reception of the transaction for processing.

Patent references:
[0123] 22. On or after the expiration timestamp or at a time or upon an event as defined by
the terms, and before the lock time of the complete refund transaction record, …

[0186] 21. On or after the expiration timestamp, or at a time or upon an event as defined by
the terms, and before the lock time of the complete refund transaction record, ...

Also note that there is a draft EIP-4494 which seeks to change this infinite time to a specified
deadline expiration. This demonstrates that the ‘approve’ function does have a time
component albeit undefined and implied.

https://eips.ethereum.org/EIPS/eip-4494

/// @notice Function to approve by way of owner signature
/// @param spender the address to approve
/// @param tokenId the index of the NFT to approve the spender on
/// @param deadline a timestamp expiry for the permit
/// @param sig a traditional or EIP-2098 signature
 function permit(address spender, uint256 tokenId, uint256 deadline,
bytes memory sig) external;

iii. a first
computer
processor

The hardware device, hosting the API software/libraries (used by an App), such as a
computer or mobile phone.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 95 of 117 PageID #: 157

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439
https://eips.ethereum.org/EIPS/eip-4494

EXHIBIT 3

95

coupled to the
first memory
and the first
network
interface, the
first computer
processor
configured to:

A. read the first
private key
from the first
memory

The hardware device, hosting the API software/libraries (used by an App), such as a
computer or mobile phone. The App requires the user to authenticate themselves via the
Wallet private key either before using the App or for sign individual transactions. The private
key is encrypted on the device and accessed for reading (and subsequently used to calculate a
transaction signature) by the app/wallet from the passcode/protection mechanism of the
app/wallet.

Coinbase Wallet requesting confirmation to access (read) the private key to authorise and
sign the transaction.

B. compute a
first
cryptographic
signature
from the first
private key;

The hardware device, hosting the API software/libraries (used by an App), such as a
computer or mobile phone. The App requires the user to authenticate themselves via a Wallet
before using the App.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 96 of 117 PageID #: 158

EXHIBIT 3

96

Coinbase Wallet requesting confirmation to access (read) the private key to authorise,
calculate signature and sign the transaction.

eth_SignTransaction

web3.eth.signTransaction(transactionObject, address [, callback])
Signs a transaction.

Parameters
Object - The transaction data to sign. See web3.eth.sendTransaction() for more.
String - Address to sign transaction with.
Function - (optional) Optional callback, returns an error object as first parameter and the
result as second.
https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#signtransaction

C. create an
inchoate data
record
comprising:

While the Computing Device and the Second Client device are the same device, the
Inchoate Transaction is created for the NFT seller to approve an account (typically a smart
contract account) to transfer ownership of the NFT when the terms are met.

The App (Coinbase Wallet) creates a transaction message to be sent to the Ethereum
Network. RPC JSON API calls are defined to allow interaction with the Ethereum
network. The App constructs the following message which is aligned with this standard.

eth_sendTransaction (EIP1559)
Creates new message call transaction or a contract creation, if the data field contains code.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 97 of 117 PageID #: 159

https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#signtransaction

EXHIBIT 3

97

Object - The transaction object

1. from - String|Number: The address for the sending account. Uses the
web3.eth.defaultAccount property, if not specified. Or an address or index of a
local wallet in web3.eth.accounts.wallet.

2. to - String: (optional) The destination address of the message, left undefined for
a contract-creation transaction.

3. value - Number|String|BN|BigNumber: (optional) The value transferred for the
transaction in wei, also the endowment if it’s a contract-creation transaction.

4. gas - Number: (optional, default: To-Be-Determined) The amount of gas to use
for the transaction (unused gas is refunded).

5. gasPrice - Number|String|BN|BigNumber: (optional) The price of gas for this
transaction in wei, defaults to web3.eth.gasPrice.

6. type - Number|String|BN|BigNumber: (optional) A positive unsigned 8-bit
number between 0 and 0x7f that represents the type of the transaction.

7. maxFeePerGas - Number|String|BN: (optional, defaulted to (2 *
block.baseFeePerGas) + maxPriorityFeePerGas) The maximum fee per gas that
the transaction is willing to pay in total

8. maxPriorityFeePerGas - Number|String|BN (optional, defaulted to 1 Gwei) The
maximum fee per gas to give miners to incentivize them to include the
transaction (Priority fee)

9. accessList - List of hexstrings (optional) a list of addresses and storage keys
that the transaction plans to access

10. data - String: (optional) Either a ABI byte string containing the data of the
function call on a contract, or in the case of a contract-creation transaction the
initialisation code.

11. nonce - Number: (optional) Integer of the nonce. This allows to overwrite your
own pending transactions that use the same nonce.

12. chain - String: (optional) Defaults to mainnet.
13. hardfork - String: (optional) Defaults to london.

Returns

3. DATA, 32 Bytes - the transaction hash, or the zero hash if the transaction is not
yet available.

https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#sendtransaction

The App (Coinbase Wallet) initiates a smart contract call populating the data field of the
above message.

From: https://eips.ethereum.org/EIPS/eip-721

/// @notice Change or reaffirm the approved address for an NFT
/// @dev The zero address indicates there is no approved address.
Throws unless `msg.sender` is the current NFT owner, or an
authorized operator of the current owner.
/// @param _approved The new approved NFT controller
/// @param _tokenId The NFT to approve
function approve(address _approved, uint256 _tokenId) external
payable;

I. a commit
input for
receiving a
commit data

The commit input is the offer to sell the NFT indicated by an ‘approve’ function call.

From: https://eips.ethereum.org/EIPS/eip-721

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 98 of 117 PageID #: 160

https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#sendtransaction
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721

EXHIBIT 3

98

from a
commit
transaction;

/// @notice Change or reaffirm the approved address for an NFT
/// @dev The zero address indicates there is no approved address.
Throws unless `msg.sender` is the current NFT owner, or an authorized
operator of the current owner.
/// @param _approved The new approved NFT controller
/// @param _tokenId The NFT to approve
function approve(address _approved, uint256 _tokenId) external
payable;

II. one or more
outputs
obtained from
at least one of
the first
principal data
or the second
principal
data, and a
value data
from at least
one of the
first data
source or the
second data
source; and;

The output data includes:
• The signed acceptance of the offered NFT based on the value description of the

Metadata URI link.
• The disbursement amount to the seller and the originator based on the royalty fee

definition of the NFT.

III. The first
cryptographic
signature;
and

The hardware device, hosting the API software/libraries (used by an App), such as a
computer or mobile phone. The App requires the user to authenticate themselves via a Wallet
before using the App.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 99 of 117 PageID #: 161

EXHIBIT 3

99

Coinbase Wallet requesting confirmation to access the private key to authorise and sign the
transaction.

eth_SignTransaction

web3.eth.signTransaction(transactionObject, address [, callback])
Signs a transaction.

Parameters
Object - The transaction data to sign. See web3.eth.sendTransaction() for more.
String - Address to sign transaction with.
Function - (optional) Optional callback, returns an error object as first parameter and the
result as second.
https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#signtransaction

D. publish the
inchoate data
record to at
least one of
the first client
device or the
second client
device;;

The published Inchoate Data Record is the offered NFT for sale on a marketplace. The
following is an example from the Coinbase NFT Marketplace.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 100 of 117 PageID #: 162

https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#signtransaction

EXHIBIT 3

100

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439

7. b. the first client
comprises:

i. a second
memory for
storing a
second
asymmetric
key pair, the
second
asymmetric
key pair
comprising a
second
private key
and a second
public key.

The Computing Device | Facilitator consists of:
• the Coinbase (Owned, managed or offered) Ethereum Validator Full Nodes; and
• the Coinbase (Owned, managed or offered) Ethereum supporting Archive Nodes

and Light Nodes; and
• the Coinbase (Ethereum compatible) wallets;

Where both the Coinbase Nodes and the Coinbase Ethereum compatible end user wallet
device are networked to have direct or indirect communication with each other.

Client Device
The First Client is the end user device that accepts an offer for an NFT.
The Second Client is the end user device that authorises an NFT to be offered for sale.

Three (3) Client instances have been identified that represent various implementations that
exist.

1. Client is a device running an App (Coinbase Wallet) that uses a Javascript
Ethereum Provider API (as per EIP-1193) such as web3.js or ethers.js. This device
will also use a key storage wallet with EIP-191 or EIP-712 signing support (such
as Metamask/Coinbase Wallet) to send an NFT transactions. The use of an EIP-
1193 based Ethereum Provider API or EIP-191/EIP-712 signing support means the
Client is considered to be part of the Ethereum Network.
http://eips/ethereum.org/EIPS/eip-191
http://eips/ethereum.org/EIPS/eip-712
http://eips/ethereum.org/EIPS/eip-1193

2. The Computing Device and the Client are the same device where the Client is a

Client Browser or Command Line Interface on a Coinbase Ethereum Node used to
create, sign and submit NFT transactions to the Coinbase Ethereum Node for
processing.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 101 of 117 PageID #: 163

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439
http://eips/ethereum.org/EIPS/eip-191
http://eips/ethereum.org/EIPS/eip-191
http://eips/ethereum.org/EIPS/eip-712
http://eips/ethereum.org/EIPS/eip-712
http://eips/ethereum.org/EIPS/eip-1193
http://eips/ethereum.org/EIPS/eip-1193

EXHIBIT 3

101

3. Client is a device running an App (Coinbase Wallet) that uses a Javascript
Ethereum Provider API (as per EIP-1193) such as web3.js or ethers.js.. This
device will also use a key storage wallet. This device uses private key management
in order to sign transactions

Where the Client running the App (Coinbase Wallet) software, as part of the Facilitator, need
a computer hardware/software combination to run, namely:

• Memory (RAM), used in the computing device (such as a computer or mobile
phone).

• Transaction record sector (stores transactions that haven't been submitted to the
blockchain yet) kept via the crypto software wallets

Where the Client running the App (Coinbase Wallet) software, contains:

• a first key pair sector which is generated and stored in the wallet software
• The asymmetric key pair generated and/or stored consists of a first private key and

a first public key – all found and manipulated via the wallet software.
• The wallet software connects via the public key or the key pair, and authorizes

(signs) the transaction with the private key of the key pair.

Where the Client interacts with the Eth Client Browser or Command Line Interface to
transaction creation, contains:

• a first key pair sector which is generated and stored on the device
• The asymmetric key pair stored consists of a first private key and a first public

key.

Where the Client interacts with App (Coinbase Wallet) with Private key management in
order to sign transactions, contains:

• a first key pair sector which is stored in the key management vault/software
• The asymmetric key pair generated and/or stored consists of a first private key and

a first public key – all found and manipulated via the key management
vault/software.

• The key management vault/software connects via the public key or the key pair,
and authorizes (signs) the transaction with the private key of the key pair.

ii. a second
network
interface; and

The Client device requires a network interface in order to connect a wallet to the marketplace
to offer the NFT for sale.

1. Click on the ‘Sign In’ button top RHS.

2. Selecting ‘Coinbase Wallet’ prompts the user to connect to the website.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 102 of 117 PageID #: 164

EXHIBIT 3

102

3. Attempting to connect without a network interface (as shown with no Wifi
connected).

4. The user is not connected to the NFT marketplace and is instead requested to

connect wallet.

5. When connected to a network the user creates a username and password that is

associated from the wallet signature.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 103 of 117 PageID #: 165

EXHIBIT 3

103

6. The user is logged in as indicated at the top RHS icon.

iii. a second

computer
processor
coupled to the
second
memory and

The hardware device, hosting the API software/libraries (used by an App), such as a
computer or mobile phone.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 104 of 117 PageID #: 166

EXHIBIT 3

104

the second
network
interface, the
second
computer
processor
configured to:

A. read the
second
private key
from the
second
memory;

The hardware device, hosting the API software/libraries (used by an App), such as a
computer or mobile phone. The App requires the user to authenticate themselves via the
Wallet private key either before using the App or for sign individual transactions. The private
key is encrypted on the device and accessed for reading (and subsequently used to calculate a
transaction signature) by the app/wallet from the passcode/protection mechanism of the
app/wallet.

 Coinbase Wallet requesting confirmation to access (read) the private key to authorise and
sign the transaction.

B. read the
inchoate data
record

The published Inchoate Data Record is the offered NFT for sale on a marketplace. The
following is an example from the Coinbase NFT Marketplace.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 105 of 117 PageID #: 167

EXHIBIT 3

105

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439

C. compute a
second
cryptographic
signature
from the
second
private key;

The hardware device, hosting the API software/libraries (used by an App), such as a
computer or mobile phone. The App requires the user to authenticate themselves via a Wallet
before using the App.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 106 of 117 PageID #: 168

https://nft.coinbase.com/nft/ethereum/0x0a62be5f3552c4252f50edcd75de3aed831f9599/439

EXHIBIT 3

106

Coinbase Wallet requesting confirmation to access (read) the private key to authorise,
calculate signature and sign the transaction.

eth_SignTransaction

web3.eth.signTransaction(transactionObject, address [, callback])
Signs a transaction.

Parameters
Object - The transaction data to sign. See web3.eth.sendTransaction() for more.
String - Address to sign transaction with.
Function - (optional) Optional callback, returns an error object as first parameter and the
result as second.
https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#signtransaction

D. create a
complete data
record
comprising:

I. the commit
input;

The App (Coinbase Wallet) initiates a smart contract call populating the data field of the
above message.

From: https://eips.ethereum.org/EIPS/eip-721

ERC-721 standardizes a safe transfer function safeTransferFrom (overloaded with
and without a bytes parameter) and an unsafe function transferFrom. Transfers may
be initiated by:

• The owner of an NFT

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 107 of 117 PageID #: 169

https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#signtransaction
https://eips.ethereum.org/EIPS/eip-721

EXHIBIT 3

107

• The approved address of an NFT
• An authorized operator of the current owner of an NFT

II. the output
data;

The output data includes:
• The signed acceptance of the offered NFT based on the value description of the

Metadata URI link.
• The disbursement amount to the seller and the originator based on the royalty fee

definition of the NFT.

III. the first
cryptographic
signature,
and

The seller has signed the ‘approve’ smart contract function call to authorise transfer of
ownership when the terms are met.

IV. the second
cryptographic
signature,

The buyer signs the transaction.

The hardware device, hosting the API software/libraries (used by an App), such as a
computer or mobile phone. The App requires the user to authenticate themselves via a Wallet
before using the App.

Coinbase Wallet requesting confirmation to access (read) the private key to authorise,
calculate signature and sign the transaction.

eth_SignTransaction

web3.eth.signTransaction(transactionObject, address [, callback])

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 108 of 117 PageID #: 170

EXHIBIT 3

108

Signs a transaction.

Parameters
Object - The transaction data to sign. See web3.eth.sendTransaction() for more.
String - Address to sign transaction with.
Function - (optional) Optional callback, returns an error object as first parameter and the
result as second.
https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#signtransaction

E. create a
transaction by
submitting the
complete data
record to the
transfer
mechanism;

The NFT approved for sale is accepted by the buyer with the safeTransfer function call to
transfer ownership to the buyer.

The App (Coinbase Wallet) creates a transaction message to be sent to the Ethereum
Network. RPC JSON API calls are defined to allow interaction with the Ethereum network.
The App constructs the following message which is aligned with this standard.

eth_sendTransaction (EIP1559)
Creates new message call transaction or a contract creation, if the data field contains code.

Object - The transaction object

1. from - String|Number: The address for the sending account. Uses the
web3.eth.defaultAccount property, if not specified. Or an address or index of a
local wallet in web3.eth.accounts.wallet.

2. to - String: (optional) The destination address of the message, left undefined for a
contract-creation transaction.

3. value - Number|String|BN|BigNumber: (optional) The value transferred for the
transaction in wei, also the endowment if it’s a contract-creation transaction.

4. gas - Number: (optional, default: To-Be-Determined) The amount of gas to use for
the transaction (unused gas is refunded).

5. gasPrice - Number|String|BN|BigNumber: (optional) The price of gas for this
transaction in wei, defaults to web3.eth.gasPrice.

6. type - Number|String|BN|BigNumber: (optional) A positive unsigned 8-bit number
between 0 and 0x7f that represents the type of the transaction.

7. maxFeePerGas - Number|String|BN: (optional, defaulted to (2 *
block.baseFeePerGas) + maxPriorityFeePerGas) The maximum fee per gas that
the transaction is willing to pay in total

8. maxPriorityFeePerGas - Number|String|BN (optional, defaulted to 1 Gwei) The
maximum fee per gas to give miners to incentivize them to include the transaction
(Priority fee)

9. accessList - List of hexstrings (optional) a list of addresses and storage keys that
the transaction plans to access

10. data - String: (optional) Either a ABI byte string containing the data of the function
call on a contract, or in the case of a contract-creation transaction the initialisation
code.

11. nonce - Number: (optional) Integer of the nonce. This allows to overwrite your
own pending transactions that use the same nonce.

12. chain - String: (optional) Defaults to mainnet.
13. hardfork - String: (optional) Defaults to london.

Returns

4. DATA, 32 Bytes - the transaction hash, or the zero hash if the transaction is not
yet available.

https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#sendtransaction

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 109 of 117 PageID #: 171

https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#signtransaction
https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#sendtransaction

EXHIBIT 3

109

The App (Coinbase Wallet) initiates a smart contract call populating the data field of the
above message.

From: https://eips.ethereum.org/EIPS/eip-721

ERC-721 standardizes a safe transfer function safeTransferFrom (overloaded with
and without a bytes parameter) and an unsafe function transferFrom. Transfers may
be initiated by:

• The owner of an NFT
• The approved address of an NFT
• An authorized operator of the current owner of an NFT

7. c. the second client
comprises:

i. a third
memory for
storing a
third
asymmetric
key pair, the
third
asymmetric
key pair
comprising a
third private
key and a
third public
key;

The Computing Device | Facilitator consists of:
• the Coinbase (Owned, managed or offered) Ethereum Validator Full Nodes; and
• the Coinbase (Owned, managed or offered) Ethereum supporting Archive Nodes

and Light Nodes; and
• the Coinbase (Ethereum compatible) wallets;

Where both the Coinbase Nodes and the Coinbase Ethereum compatible end user wallet
device are networked to have direct or indirect communication with each other.

Client Device
The First Client is the end user device that accepts an offer for an NFT.
The Second Client is the end user device that authorises an NFT to be offered for sale.

Three (3) Client instances have been identified that represent various implementations that
exist.

1. Client is a device running an App (Coinbase Wallet) that uses a Javascript
Ethereum Provider API (as per EIP-1193) such as web3.js or ethers.js. This device
will also use a key storage wallet with EIP-191 or EIP-712 signing support (such
as Metamask/Coinbase Wallet) to send an NFT transactions. The use of an EIP-
1193 based Ethereum Provider API or EIP-191/EIP-712 signing support means the
Client is considered to be part of the Ethereum Network.
http://eips/ethereum.org/EIPS/eip-191
http://eips/ethereum.org/EIPS/eip-712
http://eips/ethereum.org/EIPS/eip-1193

2. The Computing Device and the Client are the same device where the Client is a

Client Browser or Command Line Interface on a Coinbase Ethereum Node used to
create, sign and submit NFT transactions to the Coinbase Ethereum Node for
processing.

3. Client is a device running an App (Coinbase Wallet) that uses a Javascript

Ethereum Provider API (as per EIP-1193) such as web3.js or ethers.js.. This
device will also use a key storage wallet. This device uses private key management
in order to sign transactions

Where the Client running the App (Coinbase Wallet) software, as part of the Facilitator, need
a computer hardware/software combination to run, namely:

• Memory (RAM), used in the computing device (such as a computer or mobile
phone).

• Transaction record sector (stores transactions that haven't been submitted to the
blockchain yet) kept via the crypto software wallets

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 110 of 117 PageID #: 172

https://eips.ethereum.org/EIPS/eip-721
http://eips/ethereum.org/EIPS/eip-191
http://eips/ethereum.org/EIPS/eip-191
http://eips/ethereum.org/EIPS/eip-712
http://eips/ethereum.org/EIPS/eip-712
http://eips/ethereum.org/EIPS/eip-1193
http://eips/ethereum.org/EIPS/eip-1193

EXHIBIT 3

110

Where the Client running the App (Coinbase Wallet) software, contains:

• a first key pair sector which is generated and stored in the wallet software
• The asymmetric key pair generated and/or stored consists of a first private key and

a first public key – all found and manipulated via the wallet software.
• The wallet software connects via the public key or the key pair, and authorizes

(signs) the transaction with the private key of the key pair.

Where the Client interacts with the Eth Client Browser or Command Line Interface to
transaction creation, contains:

• a first key pair sector which is generated and stored on the device
• The asymmetric key pair stored consists of a first private key and a first public

key.

Where the Client interacts with App (Coinbase Wallet) with Private key management in
order to sign transactions, contains:

• a first key pair sector which is stored in the key management vault/software
• The asymmetric key pair generated and/or stored consists of a first private key and

a first public key – all found and manipulated via the key management
vault/software.

• The key management vault/software connects via the public key or the key pair,
and authorizes (signs) the transaction with the private key of the key pair.

ii. a third
network
interface; and

 The Client device requires a network interface in order to connect a wallet to the
marketplace to offer the NFT for sale.

1. Click on the ‘Sign In’ button top RHS.

2. Selecting ‘Coinbase Wallet’ prompts the user to connect to the website.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 111 of 117 PageID #: 173

EXHIBIT 3

111

3. Attempting to connect without a network interface (as shown with no Wifi
connected).

4. The user is not connected to the NFT marketplace and is instead requested to

connect wallet.

5. When connected to a network the user creates a username and password that is
associated from the wallet signature.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 112 of 117 PageID #: 174

EXHIBIT 3

112

6. The user is logged in as indicated at the top RHS icon.

iii. a third

computer
processor
coupled to the
third memory
and the third

The hardware device using the API software/libraries, such as a computer or mobile phone.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 113 of 117 PageID #: 175

EXHIBIT 3

113

network
interface, the
third
computer
processor
configured to
read the third
private key
from the third
memory; and

wherein the at least one
of the first client device
or the second client
device signs the inchoate
data record and saves a
copy of the inchoate data
record on at least one of
the first client device or
the second client device.

The First Client requires the buyer to authenticate themselves via a Wallet before using the
App. The wallet private key is used to sign the transaction for the EVM smart contract call.

Coinbase Wallet requesting confirmation to access the private key to authorise and sign the
transaction.

Note that it is not mandatory for the inchoate data record to be saved by the device as it is
optional as described in the Patent general description.

[0095] 11. The second client creates the complete commit transaction record by signing the
inchoate commit transaction record and optionally saves a copy in non-transitory memory,
the complete commit transaction record comprising:

[0111] 15. Optionally, the first client saves a copy of the complete commit transaction record
in non-transitory memory.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 114 of 117 PageID #: 176

EXHIBIT 3

114

wherein the transfer
mechanism comprising a
decentralized digital
currency that comprises
a distributed ledger that
enables processing the
transaction between the
first client device and the
second client device
without the need of a
trusted central authority,

Ether is used as the decentralised currency. The Ethereum network maintains a distributed
ledger without the need for a trusted central authority.

From the Ethereum yellow paper.
2.1. Value. In order to incentivise computation within the network, there needs to be an
agreed method for transmitting value. To address this issue, Ethereum has an intrinsic
currency, Ether, known also as ETH and sometimes referred to by the Old English ¯D.

https://ethereum.github.io/yellowpaper/paper.pdf

wherein the transaction
is created by
broadcasting the
complete data record for
transmitting and
receiving among network
participants in the
computer network for
recording in the
distributed ledger, and

The NFT approved for sale is accepted by the buyer with the safeTransfer function call to
transfer ownership to the buyer.

The App (Coinbase Wallet) creates a transaction message to be sent to the Ethereum
Network. RPC JSON API calls are defined to allow interaction with the Ethereum network.
The App constructs the following message which is aligned with this standard.

eth_sendTransaction (EIP1559)
Creates new message call transaction or a contract creation, if the data field contains code.

Object - The transaction object

1. from - String|Number: The address for the sending account. Uses the
web3.eth.defaultAccount property, if not specified. Or an address or index of a
local wallet in web3.eth.accounts.wallet.

2. to - String: (optional) The destination address of the message, left undefined for a
contract-creation transaction.

3. value - Number|String|BN|BigNumber: (optional) The value transferred for the
transaction in wei, also the endowment if it’s a contract-creation transaction.

4. gas - Number: (optional, default: To-Be-Determined) The amount of gas to use for
the transaction (unused gas is refunded).

5. gasPrice - Number|String|BN|BigNumber: (optional) The price of gas for this
transaction in wei, defaults to web3.eth.gasPrice.

6. type - Number|String|BN|BigNumber: (optional) A positive unsigned 8-bit number
between 0 and 0x7f that represents the type of the transaction.

7. maxFeePerGas - Number|String|BN: (optional, defaulted to (2 *
block.baseFeePerGas) + maxPriorityFeePerGas) The maximum fee per gas that
the transaction is willing to pay in total

8. maxPriorityFeePerGas - Number|String|BN (optional, defaulted to 1 Gwei) The
maximum fee per gas to give miners to incentivize them to include the transaction
(Priority fee)

9. accessList - List of hexstrings (optional) a list of addresses and storage keys that
the transaction plans to access

10. data - String: (optional) Either a ABI byte string containing the data of the function
call on a contract, or in the case of a contract-creation transaction the initialisation
code.

11. nonce - Number: (optional) Integer of the nonce. This allows to overwrite your
own pending transactions that use the same nonce.

12. chain - String: (optional) Defaults to mainnet.
13. hardfork - String: (optional) Defaults to london.

Returns

5. DATA, 32 Bytes - the transaction hash, or the zero hash if the transaction is not
yet available.

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 115 of 117 PageID #: 177

https://ethereum.github.io/yellowpaper/paper.pdf

EXHIBIT 3

115

https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#sendtransaction

 The App (Second Client as part of the Facilitator) initiates a smart contract call populating
the data field of the above message.

From: https://eips.ethereum.org/EIPS/eip-721

ERC-721 standardizes a safe transfer function safeTransferFrom (overloaded with
and without a bytes parameter) and an unsafe function transferFrom. Transfers may
be initiated by:

• The owner of an NFT
• The approved address of an NFT
• An authorized operator of the current owner of an NFT

wherein at least one of
the computer device, the
first client device, or the
second client device
verifies the recording of
the complete data record
in the distributed ledger
by observing an external
state

The First Client verifies that the Complete Data Record (Transaction) has been recorded by
the network as a complete transaction record. In the below image this is shown in the
‘History’ tab with the transaction shown as confirmed.

https://help.coinbase.com/en/coinbase/trading-and-funding/trade-on-dex/check-transaction-
status

When a transaction is sent, a transaction hash is received. This can be used to retrieve
transaction details. Use the JSON RPC API command getTransactionByHash({transaction
hash}) to retrieve the transaction details. The returned blockNumber should be non-null if the
transaction has been mined and included into a block.

Then call JSON RPC API eth_blockNumber to get the current block height. The number of
confirmations is the eth_blockNumber result minus the eth_getTransaction blockNumber
result.

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_blocknumber
https://github.com/ethereum/wiki/wiki/JSON-RPC#getTransactionByHash

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 116 of 117 PageID #: 178

https://web3js.readthedocs.io/en/v1.5.2/web3-eth.html#sendtransaction
https://eips.ethereum.org/EIPS/eip-721
https://help.coinbase.com/en/coinbase/trading-and-funding/trade-on-dex/check-transaction-status
https://help.coinbase.com/en/coinbase/trading-and-funding/trade-on-dex/check-transaction-status
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_blocknumber
https://github.com/ethereum/wiki/wiki/JSON-RPC#getTransactionByHash

EXHIBIT 3

116

Case 1:22-cv-01253-UNA Document 1-3 Filed 09/22/22 Page 117 of 117 PageID #: 179

