IN THE UNITED STATES DISTRICT COURT

FOR THE DISTRICT OF DELAWARE

ART+COM INNOVATIONAL POOL,) Trial Volume 4
GmbH,
Plaintiff,)
C.A. No. 14-217-RGA
V.

GOOGLE INCORPORATED,)

Defendant.)

Wednesday, May 25, 2016
8:32 a.m.
Courtroom 6A

844 King Street
Wilmington, Delaware

BEFORE: THE HONORABLE TIMOTHY B. DYK, United States District Court Judge

APPEARANCES:

FARNAN LLP
BY: BRIAN E. FARNAN, ESQ.
BY: MICHAEL J. FARNAN, ESQ.

- and -

BAKER \& BOTTS
BY: SCOTT F. PARTRIDGE, ESQ.
BY: MICHAEL A. HAWES, ESQ.
BY: LARRY G. SPEARS, ESQ.
BY: TIMOTHY ROONEY, ESQ.

Counsel for the Plaintiff

1

```
    APPEARANCES CONTINUED:
```

MORRIS, NICHOLS, ARSHT \& TUNNELL BY: JACK B. BLUMENFELD, ESQ.
-and-

O'MELVENY MYERS, LLP
BY: DARIN SNYDER, ESQ.
BY: LUANN L. SIMMONS, ESQ.
BY: BRETT WILLIAMSON, ESQ.
Counsel for the Defendants

Hawkins Reporting Service
715 North King Street - Wilmington, Delaware 19801
(302) 658-6697 FAX (302) 658-8418

THE COURT: Is there anything we need to discuss before we address the hypothetical negotiation date?

MR. PARTRIDGE: Your Honor, the only thing I would raise is that there are some objections with respect to testimony that the Defendant has proffered, but I think we can deal with those briefly at lunchtime, so I think we should probably deal with the damage issue first this morning.

THE COURT: All right.
MR. SNYDER: I'm not aware of anything other than the objections to deposition testimony.

THE COURT: Okay. I read the briefs that both sides have submitted on the hypothetical negotiation date which were quite helpful. I've concluded first of all that contrary to Plaintiff's argument, there's been no waiver with respect to the issue by Google and no impropriety in raising the issue when they raised the issue.

So let's move onto the merits. With respect to the merits, it seems to me that
there's been no showing that the patent was not substantially identical in its later iterations after the two reissues compared to the original patent and there's been no showing in my view that the Google product was materially different in 2005 than in 2010. So my ruling is that the hypothetical negotiation date, as I suggested earlier, is 2005 .

The question is whether there can be any reference to a 2010 date in the testimony of the experts on the subject. And my view is that referring to a 2010 hypothetical negotiation date would be extremely confusing to the jury, but I'll hear argument on that question briefly.

MR. HAWES: So Your Honor, we agree and would not tell the jury that the hypothetical negotiation would have been in 2010. That is not our plan. However, I think that there are facts in 2010 that are relevant to what would have happened in 2005 and that we ought to be able to present those. And I would note for Your Honor that the tenth factor of the parties' agreed final jury instruction with
regard to the reasonable royalty rate is the extent to which Google has made use of the invention and any evidence that shows the value of that use. And kind of by definition that all has to happen after the hypothetical negotiation because that use is the alleged infringement. So all the evidence concerning that use and the value of that use is going to be up in 2008, 2009, 2010.

THE COURT: You're talking about a book of wisdom theory here?

MR. HAWES: No, Your Honor. I
think the factor specifically talks about the value of the use, and that use occurs after the hypothetical negotiation date. There is no use of the invention before the hypothetical --

THE COURT: Are you familiar with the book of wisdom?

MR. HAWES: I am, Your Honor, yes.
THE COURT: Well, why isn't that
what this is?
MR. HAWES: I think there's an
overlap there. The book of wisdom talks about using what's afterwards to get inside the head
at the time and I think the book of wisdom has more often be used to say when you get to factor 13, the hypothetical negotiation factor, you can look at future events to decide how they would have negotiated. That's kind of the book of wisdom. All I'm saying, Your Honor, is there's an independent factor, factor 10 that also makes that information relevant.

THE COURT: Okay. Mr. Snyder.
MR. SNYDER: Couple of things,
Your Honor. First, I agree with Plaintiff that a reference to a 2010 hypothetical negotiation date would be extremely prejudicial. Doesn't seem to be a dispute.

THE COURT: I think it's been agreed that that's not going to happen and it would be confusing to the jury. I wouldn't permit it under Rule 403.

MR. SNYDER: Then the question is what period of time and what events during that period of time can reasonably be referenced and for what purpose given a 2005 hypothetical
negotiation? The book of wisdom is often applied in the context of actual revenues, so
that you can apply a rate to those actual revenues and move forward and make a damages determination. What Mr. Nawrocki tried to do is take some projections regarding revenues, not related to Earth, but related to a bunch of other products, and not use them for the royalty base. He uses them as part of an extended calculation to determine a royalty rate, which is completely different. So at the time of the hypothetical negotiation in 2005, what would the parties have considered? And there's certainly a fair range of dates around that, but the product has just been issued in 2005, and Mr. Nawrocki is going to want to go into 2010, 2011 to try and take those dates, take projections based on at the times of those dates for different products, not Earth, and apply those to something in 2005. And that can't be permitted and would be extremely prejudicial. THE COURT: I think the difficulty
is that it's hard for me to understand what's going on here and what the two of you are talking about and until I see what Mr. Nawrocki is planning to do. At the same time, I don't
want to put evidence in front of the jury that I'm eventually going to have to strike because it's irrelevant or should be excluded under Rule 403. Can the two of you help me understand better what we're arguing about here?

MR. SNYDER: I'll defer to the Plaintiffs for description of what they plan for Mr. Nawrocki to do, because frankly I don't know, Your Honor.

MR. HAWES: Your Honor, they've objected to the very -- they have our demonstratives, they've got the charts, they know what the information is.

THE COURT: They may have it. I don't. I don't know what's going on.

MR. HAWES: Fair enough, Your
Honor.

THE COURT: It's very hard for me to make a ruling unless I do understand what's going on.

MR. HAWES: So Google has business plans in 2008, 2010 that talk about the various ways in which their monetizing. This was the issue that Your Honor addressed in the motion
for the argument. But there were various items that we believe are linked to Google Earth and that yes, you have to apportion, because it's not, it's not that Google Earth has a one to one direct consumer driving revenue relationship, but that there are those items and that in view of what eventually occurred, the parties in 2005 could have understood that look, Google Earth in view of Google strategy is going to be developing advertising. The 2010 and 2008 business plans just tell us the particular ways in which that actually happened, the value of the invention that Google actually got.

MR. HAWES: He should be allowed to discuss that as part of discussing what the parties would have understood and agreed to in 2005. Not as this is the money we're going to get, but this is the rate we should pay to see if we can achieve that.

And if the parties with have
agreed to a certain rate for the use of the invention so they could try to achieve the goals that Google had for Google Earth. But it is specifically in terms of evidence, Your Honor, a
business plan in 2008 and a business plan in 2010.

THE COURT: They couldn't have known about a 2008 or a 2010 business plan in 2005. What's the relevance of that?

MR. HAWES: The relevance of that
is to Factor 10 of the agreed factors that the parties have agreed to which is the value of the use of the invention to Google. That is a factor that we have agreed to as part of the jury instructions.

THE COURT: I don't see that that factor suggest that you can use later information in determining what the parties would have done in 2005 . And the Book of Wisdom may allow some limited use of later data, it's a confusing doctrine, I don't know how far it goes, but I don't understand the Book of Wisdom would allow you to use projections from later years to determine what people would have done in 2005 .

MR. HAWES: Well, these business plans, Your Honor, do include data and projections, so the table that was presented to
you showed the data for a particular years and then projections for other years.

THE COURT: What is

Mr. Nawraocki's theory going to be about what the reasonable royalty rate would have been, what reasonable royalty rate would have been agreed to in 2005? What is he going to say about that?

MR. HAWES: He's going to say
there would have than at least one-and-a-half pennies per use.

THE COURT: What's the basis for
that?

MR. HAWES: A basis for that is the analysis of the expected revenue that Google was expecting to receive from the advertising that we showed in the strategy documents that we showed to the jury as well as the Google documents that showed an increase in the ad revenue for Google.com and the identified amounts of I believe it's eight categories of such ad revenue. And that ad revenue is showing 2008 and 2010, so those are the Book of Wisdom.

THE COURT: What is the relevance
of projections from 2008 and 2010 as to what the parties would have agreed to in 2005?

MR. HAWES: Both experts used --
if you looked at --
THE COURT: I don't care what both experts did. Tell me what the experts did --

MR. SNYDER: Your Honor,
Mr. Nawraocki is here. I'm very sorry to interrupt the Court.

THE COURT: Yes. Mr. Nawraocki should not be here.

MR. HAWES: Your Honor, I didn't realize he was here.

THE COURT: That is unfortunate.
Go ahead.
MR. HAWES: So Mr. Nawraocki --
Your Honor, there are specific categories of advertising revenue. So Google categorizes the way it receives the advertising revenue. One example I think Your Honor referenced in the order was IPGO, which we have actually heard a witness testify is the marginal increase in revenue that occurs because there is knowledge about the location of the person who is --

THE COURT: I understand that
theory. I do not understand what projections from 2008 and 2010 have to do with what the reasonable royalty rate would have been agreed on in 2005 .

MR. HAWES: We believe they're the best evidence of the value of the use of the invention that Google anticipated when it bought Google Earth. It's the reason they put Google Earth into their system was because they anticipated they could grow advertising.

We did have and presented to the jury the documents that show Google's anticipation from as early as January 2006 which is only a few months after the hypothetical negotiation date in 2005 that they were going to have an increase in advertising revenue as a result of growing the users of the Google system including Google Earth. Google Earth is named in that document.

THE COURT: I'm not going to allow you to use 2008 and 2010 revenue projections to determine what the hypothetical negotiation would have yielded in 2005. I'm not at this
moment ruling about something from 2006 which may be close enough in time to 2005 to be relevant, if that clarifies it for you.

MR. HAWES: It does. Can we consult with the team and see how this affects the trial, Your Honor?

THE COURT: Of course.

MR. PARTRIDGE: We would like maybe five minutes to confer, Your Honor. We may have a request to make to you as a consequence of this.

THE COURT: Why don't we recess until ten of.
(A brief recess was taken.)
THE COURT: Be seated, please.
MR. PARTRIDGE: Your Honor, this
is obviously a rather difficult issue and one that has surprised us.

THE COURT: I don't see how it
could have surprised you. We have been talking about the 2005 date for some time.

MR. PARTRIDGE: I understand what
you're saying, Your Honor, but in terms of preparing for this particular trial up until the
last few weeks, this was not something we contemplated as a possibility. That's from our standpoint. I understand you may disagree with that, but that's the way we saw it coming into this.

The issue that has been raised by this morning's discussion is one that I think requires us to spend with your permission a few minutes discussing with Mr. Nawrocki the changes that we would have to make to his testimony.

I understand that's unusual, but given this particular circumstance, I think we need a little time to discuss that with him so that when we go forward, he has some understanding as to the things we're now skipping that we had contemplated including in his testimony.

So I would ask permission to
discuss this with Mr. Nawrocki before we proceed. It probably would take ten or fifteen minutes to do so.

We are contemplating going forward following your order without making a request at this moment for any other type of relief, but I
would request the Court's permission to have fifteen or twenty minutes to discuss this issue with Mr. Nawraocki so that we can formulate a plan for going forward that is different than what has been contemplated by us up to this point in time.

THE COURT: Well, even though I think you should have anticipated this, I'm inclined to allow you to do that. Is there any objection, Mr. Snyder?

MR. SNYDER: Your Honor, I do object for two reasons. First, Mr. Nawraocki has started his testimony, so communication with him is improper. But second and most importantly, his opinions that he could offer at this trial are disclosed in his report. He's not allowed to go beyond that. So if they're going to go and plot some new testimony by Mr. Nawraocki, then it is by definition going to go beyond what is in his report and it shouldn't be allowed.

They can ask him questions, he can answer the questions. They don't need to go over with him in advance what questions are
going to be excised or how they're going to change them.

THE COURT: I'm going to overrule that objection. I'm going to allow fifteen minutes for plaintiff to discuss with Mr. Nawraocki. Now, obviously I'm not saying he can go beyond his expert report in this respect, that's a different issue.

I would say, also, Mr. Partridge and Mr. Hawes, I do take very seriously excluding the witnesses from the courtroom and it is your job to make sure the witnesses other than courtroom representatives are not present when you're having discussions with the Court outside of the presence of the jury.

MR. PARTRIDGE: And I apologize for that, Your Honor. None of us realized he was there and I accept responsibility for looking to see whether he was in the courtroom or not. And we did not do that. I apologize that that happened.

THE COURT: All right.
Mr. Snyder.
MR. SNYDER: I would like if I
can, Your Honor, some guidance from the Court on your preferred way for how I frame objections to Mr. Nawraocki's testimony. I don't know what he's going to say and what they're going to decide to have him say in the next fifteen minutes, but I am certain I 'm going to have objections about material that is beyond the scope of his report or objections that he is making statements that have no foundation.

THE COURT: We'll just have to see when it comes up how best to handle it. In allowing you to speak to Mr. Nawraocki, let's be clear about it. I am only allowing you to speak to him about the hypothetical negotiation date and the consequences of that and nothing else.

MR. PARTRIDGE: We understand that, Your Honor.

THE COURT: Now, is there any
possible way that we could continue with the jury while those discussions are going on?

MR. PARTRIDGE: I don't think so,
Your Honor, because this is our last witness.
It would be pretty awkward to start the defendant's case.

THE COURT: We'll recess until
9:15. Let's be back promptly at $9: 15$ so we can move forward with the jury.

MR. SNYDER: Your Honor, I know we got very strict time budgets and the Court is keeping track of time. I assume this time is not going to be charged against the defendants.

THE COURT: No, it's not going to be charged against anybody.

MR. PARTRIDGE: Thank you.
(A brief recess was taken.)
THE COURT: Be seated, please. Do we have anything we need to discuss before we resume?

MR. PARTRIDGE: Your Honor, we're prepared to go forward. We understand that counsel for Google intends to make objections to documents as we introduce them. That's what I read from this. But we'll go forward. We do think that -- and just for making my record, that this has been prejudice to us given the way all of this has developed up to this point in time. We respect that Your Honor has made a decision in this regard to which we disagree,
but we will go forward and we'll do the best with where we are at the moment and hopefully we'll be able to get through the testimony without having objection after objection, but we'll see how it goes and so we're ready to proceed, Your Honor.

THE COURT: Okay. I just want to put on the record that I don't think there's any possibility of prejudice here. The 2005 date has been in discussion for some period of time and I've even given you tentative rulings in advance that that was the date that I considered to be appropriate so that you could work with Mr. Nawrocki before he took the stand and now you've had the opportunity to talk to him additionally. And my ruling as to the 2008, 2010 projections is that they are not relevant. Even if they were relevant, I'd exclude them in computing the royalty rate under Rule 403. So why don't we begin and we'll probably truncate the lunch hour a bit and some of these breaks a little bit to make up time this morning.

MR. PARTRIDGE: Your Honor, may I preserve my record just for one minute?

THE COURT: Yes.

MR. PARTRIDGE: The expert report was served last October. It had both hypothetical dates in it. They responded with their own report that addressed both dates. We ended up with Daubert proceedings and this issue wasn't raised. We ended up with a second Daubert proceeding and this wasn't raised. We had a pre-trial order and this wasn't raised. And the first time we act actually got from the other side an issue of this point was the Monday following the pre-trial order and the order had already issued without this being an issue identified in the pre-trial order. I just need to make my record and I'm sure you appreciate that.

THE COURT: I understand.

MR. PARTRIDGE: Thank you.
THE COURT: Let's bring in the
jury.
(Jury enters.)
THE COURT: Good morning, members
of the jury. Sorry to keep you waiting. The lawyers and I had something we had to resolve
before we could resume. And we may truncate the lunch hour a little bit to try and make up the time. So why don't we bring Mr. Nawrocki back to the stand.

THE COURT: Mr. Nawrocki, you understand you're still under oath.

THE WITNESS: Yes, I do, Your
Honor.
THE COURT: Okay. Mr. Hawes, you may proceed.

MR. HAWES: Thank you, Your Honor.
BY MR. HAWES:
Q. Mr. Nawrocki since we've all had a night to perhaps have memories fade, could you summarize for the jury what was important to you about the Google internal documents that we looked at yesterday afternoon?
A. So what we went through yesterday was we talked about the strategic plan or the strategic framework for Google and how that was implemented by attracting users, how users were monetized by advertisers and how Google Earth was a product, as an example, was used as part of that whole plan. One thing I might mention
as well, there was that Geo business that was eventually developed to do some of the monetization.
Q. And I believe this was the final slide.

MR. SNYDER: Objection, Your
Honor. Can we have that taken down, please? This is precisely an example of what we were discussing earlier.

THE COURT: Well, let me see how it's going to be used before I rule on the objection.

MR. SNYDER: May I approach for just a moment, Your Honor.
(Side bar discussion.)
MR. SNYDER: This is a 2008
document, July of 2008. And they're putting up information about revenues. I intentionally did not object to the description about the general approach of monetizing Google Earth through ads, but now they want to put up information from '08 with specific revenue data.

THE COURT: What's the point of this?

MR. HAWES: Your Honor, I put it up for him to be able to say this is what we were looking at last time, then we were going to move to the next slide.

THE COURT: Let's just move to the next slide.

MR. HAWES: Okay.

MR. HAWES: Sorry, Your Honor.

BY MR. HAWES:
Q. So if you could turn with me to Plaintiff's Trial Exhibit Number 45 in your notebook, please, Mr. Nawrocki.
A. Yes.
Q. And are you familiar with this document?
A. Yes, I am.
Q. What was the date of this document?
A. December 2010. December 17th, 2010
Q. This is Plaintiff's Trial Exhibit $45 ?$

MR. SNYDER: Objection.

Irrelevant, Your Honor.

THE COURT: Let's see where he's going with it.
Q. And this is Plaintiff's Trial

Exhibit 45; is that correct?
A. Yes, that's correct.
Q. Did you consider this document?
A. Yes, I did.
Q. We discussed yesterday about how Google wanted to grow users and usage. Do you remember that?
A. Yes.
Q. And having looked at what happened at Google, did you find that Google succeeded in growing users and usage?
A. Yes, I did.
Q. And did you look at any Google documents in reaching that conclusion?
A. Yes.
Q. Could you describe for us the documents shown which is Plaintiff's Trial Exhibit 3150?

MR. SNYDER: Objection.
Irrelevant Your Honor.
MR. HAWES: This does not have any
projections in it, Your Honor. This is not
going to the issue they've raised, it just goes to what actually happened.

THE COURT: For the moment that's overruled.

BY MR. HAWES:
Q. So what did you find in this document?
A. So this document which is called the future of Earth, it's called By the Numbers. There is one page that goes By the Numbers, and it's looking back at what's happened so far. They identify what their activations were. See that it's 1.9 billion total activations through 2014, approximately. There was strong engagement, the average session length was one thing they looked at. Mobile devices, six to seven minutes. Desktop twenty plus minutes. So there is a difference there. You'll spend more time on your desktop than you will on your mobile device, still a significant amount of engagement time.

And they recognized they had a significant user base. 25 million seven day
active, 70 million third day active uses overall. So those are people using Google Earth on an active basis.
Q. And Mr. Nawrocki, are these projections?
A. No, these -- this is by the numbers what's happened so far.
Q. So once you looked at Google's strategy, how did you calculate the proper damages?
A. I took a look at the base and determined what the amount of infringing use was.

What's at issue here is a method claim, or a method patent. And so what I looked at is how was this method used. I looked at several things. I looked at the number of users, number of activations, number of sessions, amount of time spent, all those things as a consideration for what would measure the use.

And the reason for that is not everybody uses Google Earth. Some people use it once. Well, then it would be one session and
the royalty would be paid on that one session.

I use it, I probably use it a couple hundred times, then my sessions would be 200 sessions in there.

So based upon all that
information, I think sessions would be a reasonable basis to take a look at to measure the extent of use.
Q. Did you consider a paid up or lump sum license?
A. Yes, I considered it.
Q. And what was your conclusion?
A. My conclusion was at the time I think the parties' expectations were diametrically opposed for a lump sum. There was some testimony here in the trial you heard where ACI or Art+Com ACI was looking for a package deal. And that didn't seem to be necessarily what Google was interested in.

ACI wanted to kind of increase their overall platform. They considered certain similar amounts as part of a package deal which was discussed. They also considered certain running considerations as well or extent of use
type of licenses, so I considered that.
Q. And what was your conclusion as
to --

THE COURT: Mr. Hawes and

Mr. Snyder, can you approach the bench.
(Side-bar discussion:)

THE COURT: I want you to
establish with the witness that you're talking about a hypothetical negotiation in 2005 so there isn't any confusion in it because I don't want to intervene and tell them that's what it is in my jury charge. I want you to make clear that's the period you're talking about.

MR. HAWES: May I do it after we're done with the royalty base which is -because --

THE COURT: Yes. I don't want the jury to be confused about the time period.

MR. HAWES: I will do it, but I would like to get in royalty base first.

MR. SNYDER: I also, Your Honor, think it's essential that he identify a foundation for an opinion before he blurts out what it is on the royalty rate.

THE COURT: We will see where it
goes.
(End of side-bar.)

BY MR. HAWES:
Q. So Mr. Nawrocki, I think it's the same question I just asked. What was your conclusion concerning your analysis of the lump sum royalty and the running royalty?
A. That a running royalty rate would be the appropriate royalty for this matter.
Q. And what was the first thing you needed to do in order to apply a running royalty?
A. To determine what the royalty base would be.
Q. And how did you determine the royalty base?
A. So after considering the various options, I determined it based upon looking at the amount of sessions that Google had for Google Earth. They actually record the amount of sessions.
Q. And what kinds of Google documents did you use for that analysis?
A. So as part of this case, Google produced numerous spreadsheets. This was one such spreadsheet. It was much longer than this and wider than this, it's a voluminous spreadsheet. This is an extraction of that.

You see day by day it shows the amount of Google Earth sessions. On the left column, you see iPhone, iPad, Android, PC, there are various other devices there identified as well. The next column shows the amount of minutes on average. You see that varies from seventeen to twenty minutes on average.

And then the very right column is the total amount of sessions. It's not showing up totally on the screen here. I don't know if it can be moved over. But that number looks like it's 1.7 million, it's actually approximately 17 million. So 17 million, so between 15 and 20 million sessions per day, 15 to 20 million sessions per day people using it based on their own records.
Q. And this is Plaintiff's Trial Exhibit 55?
A. Yes, it is.
Q. And that was a spreadsheet you considered; is that correct?
A. Yes.
Q. Please turn in your notebook to Plaintiff's Trial Exhibit 72C. And can you tell the jury what that document is?
A. Yes. This is another Google document that I looked at to make an adjustment to the data here.
Q. What is the document?
A. The document is a spreadsheet from Google that identifies certain price levels.
Q. And could you turn to Plaintiff's Trial Exhibit 73 and tell the jury what that document is?
A. 73. So this is another spreadsheet and it's sales by customer.
Q. Could you turn to Plaintiff's Trial Exhibit Number 198 and tell the jury what that document is?

I believe you have two notebooks, Mr. Nawrocki.
A. Yes. Sorry.

So 198 is a Google document that
identified the average user size for different aspects including government.
Q. And could you explain to the jury how those three documents were important to your analysis of the royalty base?
A. So the spreadsheet has total sessions on a worldwide basis. I had to adjust this database for this US proceeding by a couple of things, or several things.

First of all, these documents were used that I just mentioned to adjust for federal government use. Federal government use is not at issue in this proceeding, so I had to make a calculation of what that usage or what those sessions would be.
Q. So having done that, could you please turn on your notebook to Plaintiff's trial exhibit 66 and tell the jury what that document is?
A. Okay. So this is another Google spread sheet that shows the worldwide activations.
Q. And then could you turn to exhibit number 190 and tell the jury what that is?
A. That's another Google spread sheet that shows the number of activations by country.
Q. And how were those two exhibits important to your analysis?
A. I use those to estimate what the U.S. sessions would be. The information on the spread sheet that we talked about previously, PTX-055 has worldwide sessions. I had to estimate what the U.S. sessions would be and then I had to exclude the government use as well.
Q. So could you explain to the jury how after taking those steps you reached a conclusion as to the royalty base in this case?
A. So then I summarized the information by year. I believe it's not showing up. I'm sorry, it is. I didn't see it on the screen.
Q. This again is confidential information, it will not show up on the screen.
A. I understand. So I summarized their sessions for the U.S., excluding government sessions on the schedule. And so you'll see starting in 2010 , the amount starts
in the middle of 2010. There were sessions before this, but for damages purposes I've started in the middle of 2010 , all the way through April of 2016 . And you'll see there's several billion per year for a total of 7,099,171,846.
Q. And what steps did you take other than the federal government adjustment and U.S. adjustment that you previously described in reaching this conclusion?
A. So the other adjustment that was made was for after 2013 Google Earth was combined with Google Maps. And so the data that Microsoft -- not Microsoft, that Google had for the sessions didn't include Google Earth or Google Maps for those years. It did include some of the sessions but not all the sessions, so I had to estimate the sessions for '14, '15 and '16 by looking at the prior years.
Q. And did you reach a conclusion as to the property royalty base in this case?
A. Yes. And so my conclusion based upon my analysis was that the royalty base would be again the 7 billion, 99 million that we
talked about.
Q. And how did you go about
considering potential royalty rates?
A. So I looked at a set of reasonable royalty factors. This chart shows the factors that I've proved off. For purposes of calculating a rate, there's a case called Georgia Pacific and it identifies 15 factors that I considered as part of my analysis. I'm not going to go through all 15 factors, so what I've done is I've grouped them into three groups. Certain factors deals with licensing considerations, some of them dealing with technical and then there's a variety of financial and business factors, like commercial success, extent of use, things such as that, all leading to what's on the bottom is a hypothetical negotiation; in other words, what the parties would have agreed to when they would have sat down at this table and applied what rate should be applied to it.
Q. Mr. Nawrocki, going forward in our discussion, can you please assume with me that that hypothetical negotiation would have been
when Google Earth 3.0 was released in 2005?
A. Okay.
Q. Thank you. At the time of the acquisition of Keyhole by Google in 2004, did you hear about that in earlier testimony?
A. Yes, I did.
Q. What kind of an investment was Google planning to make in the Keyhole technology?
A. So there was some discussion from a Mr. Jones about when the Keyhole was purchased. And at the time as I understand it, they were looking for Google to invest a billion dollars to continue to develop the network in Google Earth as part of that arrangement.
Q. Mr. Lodge, could you please put up Plaintiff's trial exhibit 200. And could you describe for us what this document is, Mr. Nawrocki?

THE COURT: We're again dealing with non-confidential documents. May they be shown on the screen?

MR. HAWES: Yes, Your Honor.
BY MR. HAWES:
Q. Could you please describe for the jury what this document is, Mr. Nawrocki?
A. So what this document is, is this is a press release from Google dated June 28 th, 2005, from Mountain View and it says Google has announced the launch of Google Earth and it goes on and describes it. Later on in that sentence it says Google Earth enables users to fly from space to street level views to find geographic information and explore places around the world. If you look further down in the document as an example, the next section talks about key features of Google Earth. For example, first bullet point says that it's free software that's download available. They also mention, a couple bullet points down, the fourth one, integrated Google Local Search to find local information such as hotels, restaurants, et cetera. So as soon as it was released they recognized that they would be selling it for free, even though Keyhole had been selling it for $\$ 69$ a user, they were going to introduce it as a free product in addition to having those paid subscriptions as well. And that it would be integrated into
their Google Local Search platform.
Q. Was there any other information in this document you found useful to your analysis?
A. I believe if you page down a little bit further, I can't see the whole document. What's the exhibit number?
Q. This is exhibit number 200 , Mr.

Nawrocki?
A. Uh-huh. Yes, on the next page as an example, the top of the next page. Second paragraph, says for users interested in a more advanced mapping capabilities, there would be Google Earth plus for $\$ 20$ per year which had features such as GPS, data import and then Google Earth Pro was $\$ 400$ per year. So a unique situation here, some subscriptions were paying $\$ 20$ a year, $\$ 400$ a year per user and then it was available to consumers on a free basis as well, or users I should say. So there's obviously more capabilities some of these things had, but they were looking at both the paid model as well as the free model.
Q. Mr. Lodge, could we pull up Plaintiff's trial exhibit 31, please? Could you
identify this document for the jury?
A. Let me --
Q. Help us zoom so that we can see what's important in it to you.
A. Yeah, so this is a Google document. If you go to the date, actually there's a revision date on the top. The very bottom of the document, pull that up. I believe it's approximately 2005. The very last page. I don't know if you have it. Yeah, the very last page. Yeah. So the original document or the original version was dated August 9th, 2005. So this was a couple months after they released it. So August 9th, 2005, this was the initial generation of the document. Let's go to the front date. I just wanted to establish what the timing was. So couple months hypothetical. So this is the front end. Maybe zoom back, if you don't mind. So at the bottom portion they talk about several things. Within the vision, they talk about that first section says as Google rolls out more location dependent applications like Local and Earth, it is important that we develop a monetization solution and levers that
information. So that was important to me as if you recall from that strategic framework we talked about, talked about getting users, getting information and monetizing it. So that goes back to that network effect that we talked about, and this is an example of that. You can close that one.

If you go down below that second,
that's called background and motivation, they identified here several things. And again, this is a month or two after they've introduced their product. The middle paragraph says currently the combined local maps, properties generating five million searches a day, Google Earth is generating about one million local search per day and seven million Geo codes. Geo codes are geographic codes of where that information is generated. So where you are or where you are looking for, those codes would be important. And again they're recognizing that at that point. The next thing there's comment on is they mention several things, they mention RPM there in the next sentence.
Q. What does RPM stand for?
A. Talking about how they can generate revenue here and they're saying if we make some assumptions on growth we can get certain RPM's of conservative $\$ 10$ per RPM. That's revenue per thousand. So it's kind of confusing, what's $\$ 10$ had per dozen. That's a penny a unit or penny a search, if you will. So conservatively a penny a search is what they were thinking about at that point in time and they put in some assumptions on growth.

I call your attention to 25
percent per month and 10 percent after that. That's a fairly aggressive growth rate, 25 percent a month, would be several hundred percent within a year. That's a fairly aggressive growth rate they were looking for. If I may just continuing on, the other aspects I saw relevant to this document -- if you could close that. There's a table on the bottom which we don't have to blow up, that relates to the maps. They make some assumptions there. Go to the top of the next page. And it has an anticipation for Earth. It's a little bit grainy there, so I'll try to read through it.

You can blow it up perhaps. So it has what the revenue impact for Google Earth is and this is as of the time of August 2005, so the current volume is 1.5 million searches per day. The assumed traffic growth in this box, is 25 percent per month. So that's several hundred percent per year basically.

The next item is the assumed RPM, that's the 10,000 or $\$ 10$ per thousand searches, so that's a penny a search at that level. And then they go ahead and anticipate at that point in time what their annual run rate is. I'll explain what that is, but the amounts are as of January 2006, so forth next year they were anticipating a 7.3 million run rate for that year, at that point in time. And then if you go ahead to the next January, it would say well, there's going to be 25 million a year later. So that's more than a 300 percent increase in that -- those first couple years they were looking at and it would continue on if they would be successful.
Q. Based on your review of the Google documents, what was your conclusion as to the
perception of the growth of -- growth rate of Google Earth in the 2005 time frame?
A. They expected high growth for that ad application.
Q. And based on your review of the Google documents, what portion of Google's Geo business was Google Earth in the 2005 time frame?
A. So in 2005 they didn't really identify it in the next year. I believe it was 2006, so first full year after that, they began identifying it. And in fact, we had a document we referred to earlier that had what their revenue was. I believe it was a 2006 direct revenue.
Q. Could we move to slide \#9, Mr. Lodge. Is this the one you're referring to?
A. Yeah, this is an example. So they refer to 2005 at the top saying revenues had increased a hundred percent for Earth Pro and 200 percent for Enterprise compared to 2005, but what they show is is the 2006 results, this is the first full year afterwards. And what you'll notice that I mentioned yesterday, I believe is
that Earth, the Earth products plus the Pro, the Enterprises and then Earth ads down at the bottom, add all those together would represent more than 50 percent of their direct revenues at this point in time, so more than 50 percent of the 53 million. I might add, and this is a focal point, is that the Google Earth ads at the bottom at this point were 1.2 million. Remember the prior slide we talked about as being 7 million as they would go forward and then 25 annual run rate, so they were anticipating significant growth over this 1.2 million, even in that '05 time period. This summarized what they received at this point, but at that 2005, ads were where they were expecting to grow. But even at this point Earth represented
approximately 50 percent, a little bit more than 50 percent of their total revenues.
Q. Have you prepared a slide to illustrate for the jury what the hypothetical negotiation would have looked like?
A. I didn't misspeak, but I want to be clear. I said approximately 50 percent of their total revenues, their total Geo direct
revenues, to be more precise. I don't want to say it's 50 percent of Google's revenues. 50 percent of the Geo direct revenues to be precise.
Q. Thank you, Mr. Nawrocki. You presented a slide for the jury to illustrate what the hypothetical negotiation would look like?
A. Yes.
Q. Mr. Lodge, could we move to -THE COURT: It's not a confidential slide.

MR. HAWES: It is not, Your Honor.
BY MR. HAWES:
Q. Could you explain for the jury what you've shown here?
A. Yes, so this would be the hypothetical negotiation or depiction of a hypothetical negotiation with Art+Com sitting on one side, Google sitting on the other side to negotiate a license agreement that didn't happen in this case. But what we have a construct of is if the parties got together, they would get together and have to have a discussion.
Q. And what assumptions would you make about that discussion?
A. There are several assumptions. First of all the assumptions would be that the parties would be willing and able to license, come to a license agreement. They would be willing licensors.

There is an assumption that the patents would be valid and infringed. So there wouldn't be a challenge of that. The parties would agree that they were valid and infringed and now we're going to have to try to work out a license agreement.

The other thing that's important it's sometimes referred to as all information is available for both parties. The cards are referred to as face up. The information for both parties would be available for them to consider.
Q. So we talked about these factors before. What aspects of the licensing factors in your opinion affected the royalty rate?
A. I would say I considered all of these factors. The ones that had the most
impact I would suggest would be the
interrelationship with the technical with the financial and business factors. The licensing had an impact, but not directly on the rates specifically.

So the reason for the technical
and financial factors is the financial is where you can take a look to determine what some of the numbers would be. The technical side, what that refers to is how superior is this technology compared to what was out there and what's the real benefits of this technology.

Dr. Castleman talked about what he saw as the benefits of that. I saw Mr. Pavel Mayer talk about how excited he was when he saw certain information. I think I leaned on my discussions with Dr. Castleman about the importance of this technology, so that does impact when you take a look at what portion relates to the patents.
Q. What license agreements did you look at?
A. So there was several considerations from a licensing standpoint.

There has been some discussion about what the offers were, considerations were of the ten cents a user, dollar per user, ten cents a use that ACI had been looking for. I also considered a couple of agreements that Google had produced that their expert regards as relevant, and I considered those as well.
Q. And how would financial and business factors affect the royalty rate?
A. There are several factors on the financial and business side. Those deal with things such as extent of use, what's the value from that use, and we were talking a little bit about the value of that use, things such as Google Toolbars that you add, the search revenues that you could see, the ad revenues from the searches.

What amount relates to the patent at issue versus the other considerations, so those are the financial and business type factors that I considered.
Q. What impact did you consider for Google with regard to Google Earth's brand?
A. I think the importance of their
brand can't be minimized. They have certain documents they produced that showed how they looked at how Google Earth had helped their brand or was one of the more important aspects of their branding.
Q. Let's pull up Plaintiff's Trial Exhibit 3150. Is this one of the documents you're referring to? I think we have seen it before?
A. Yes. So it's identified as good for the brand, and it says that Maps and Earth have two of the five most favored Google brands. You'll see G-mail and Chrome and uTube. Maps and Earth are above those in the higher bars.
Q. Now, in looking at the impact of the technology, did you also look at the credit that Google ought to receive for some of Google's contributions?
A. Yes.
Q. And in apportioning or separating out the value of the '550 patent, what did you need to do in order to separate the Geo business from Google Earth?
A. So we talked about this Geo
business platform which included several things. I had to take a look at Google's own documents and identify what portion of that was related to Google Earth because not all of it was Google Earth. There were several things talked about. There were things that were directly or indirectly related to Google Earth and I needed to take a portion of that.
Q. So looking back to 2005 and 2006, what document in 2005 or 2006 did you use to get an estimate of the value of Google Earth inside of Geo?
A. So for one aspect of that, I looked at that direct source of revenue that you referred to earlier.
Q. Have you jumped to slide nine?
A. Just to reference that. This document where we talked about the Earth --

THE COURT: That should be confidential, shouldn't it?

MR. HAWES: Sorry, Your Honor.
A. So the Earth Plus Pro Enterprise and ads, again here shows this approximately 51 percent, 50 to 51 percent of the total revenues
at that point in time.
Q. And did you also need to make an apportionment with respect to the United States?
A. Yes, I did. I'm just pausing a little bit. This was the direct revenues. There were some indirect revenues they looked at as well. Those related to Google Earth Toolbar which we won't have to identify here, but there were Toolbar which were additional things which would put a higher percentage on Google Earth. The direct is about 50 percent, the indirect was higher at this time. I'm sorry I interrupted your question.
Q. Can we pull up Plaintiff's Trial Exhibit 160. I believe this one is not confidential. Can you explain to the jury what this document is?
A. This is a Google financial statement. It's called a $10-\mathrm{K}$ report at the top. It's filed with the Securities and Exchange Commission by Google.
Q. How did this document play into your analysis?
A. This document has their sales, not
for Google Earth but in total and it shows what their sales were to $U S$ as a portion of total. That percent is approximately 48 percent.

MR. SNYDER: Objection, Your
Honor.
THE COURT: Overruled.

MR. SNYDER: I'm trying to find a date of this document. 2011. This is for 2011, Your Honor.

THE COURT: Overruled.

BY MR. HAWES:
Q. After apportioning out the United States portion of the benefits of Google Earth, could you please turn with me to Plaintiff's Trial Exhibit 219 in your notebook?
A. Yes, I have it.
Q. Can we bring up Plaintiff's Trial Exhibit 219, please. I think this one is public. We can leave that up.

Can you explain to the jury what we're looking at here?
A. This is a document that --

MR. SNYDER: Objection, Your

Honor.

MR. HAWES: Please stop for a
moment.

MR. SNYDER: This is a document
from five years after the hypothetical negotiation, Your Honor. It's going to be used for an improper purpose.

THE COURT: For the moment that's overruled. Let's see how it's used.

BY MR. HAWES:
Q. Can you explain to the jury what this document is, Mr. Nawrocki?
A. This document summarizes how Google shares revenues with partners they have, someone uses a Google search engine, they share their revenues. Without getting into details, AdSense is a program where people can use Google search results for activities and if you view that on the website, then Google will share that revenue with you.

If you look later on in the document, they talk at the top end about where sharing the revenue, the page I'm looking for is the second page, the first full paragraph.
Q. So the one that begins we pay?
A. Yes. So we pay our AdSense for search partners a 51 percent revenue share. So that means if you do those activities, its partner would receive 51 percent, Google would have 49 percent, so roughly a split.
Q. Is that a projection Mr. Nawrocki?
A. That's how they actually operate. What I call your attention to at the very bottom sentence, it says the AdSense for search revenue share has remained the same since 2005 when we increased it.
Q. Thank you, Mr. Nawrocki. How did you use the information you learned from this document?
A. So one other aspect is to show how it came into. I considered this, but the next, second sentence, sorry about that, second sentence within that paragraph, you can leave that paragraph alone, it says as with AdSense for content the proportion of revenue that we keep reflects our costs, including the significant expense, research and development involved in building and enhancing our core search and AdWords technologies. I recognize
when we're talking about this monetization effort by Google, they need to be given credit for that. We're in a patent infringement case here about the patent at issue and I need to give credit to Google for what they've contributed. And there are several ways I did that. This is one consideration I made.
Q. Just to make sure we pack up the list, the first thing you did was with respect to splitting out the US portion, what was the percentage there?
A. That was 48 percent.
Q. And the second thing you did was to give credit with regard to I guess you said Google's research and development and building and enhancing core search and AdWord?
A. For the search platform, what they bring to the platform.
Q. What percentage of credit did you give that?
A. 49 percent to Google, 51 percent would remain.
Q. So what was the next apportionment step that you conducted when trying to determine
how much of the credit should go to Google?
A. Well, we talked about taking a
look at what amount relates to the patent as an example, how much apportion should relate to the patent. If we make all these considerations, what amount would relate to the patent at issue.

And based upon my discussions with
Dr. Castleman, there was several aspects of things that were regarded as critical to the functionality.

I believe in his testimony he had a three-legged stool there which had the data, the volume of data here that's used by Google. They talked earlier about the billion dollar investments, so that was one consideration.

There were certain documents that had what those costs were per content acquisition it's called.

Additionally I looked at the hardware infrastructure cost that he considered as the other leg of the stool. And the third leg of the stool is the patent at issue.

So I assigned 30 percent to the patent at issue, considering all these other
deductions that were made, what the Google Earth would be as a portion, what the US portion would be, giving credit to Google for their search platform, the upper half, or half I should say, approximately half, and then 30 percent to the patent at issue.
Q. Can being back to slide 22,

Mr. Lodge, so we discussed. We went through the royalty base and we just discussed a number of the factors that go to the royalty rate. I think yesterday we actually discussed what was the guidance you received legally with respect to that. And what was that, could you repeat that for the jury?
A. That was referring to a statute that said damages should be adequate to compensate for a reasonable royalty for the use made of the invention.
Q. And if royalty, if a reasonable royalty for the use were determined, how would one use that rate to determine the royalty damages?
A. So the rate that would be applicable here, you would be applied the
royalty base to arrive at what the royalty damage would be.
Q. And you were here in the courtroom when there was a discussion of a rate that was offered by ACI with respect to the per use, do you remember that?
A. Yes.

MR. SNYDER: Objection, Your

Honor. It's irrelevant. The rate he's about to ask was from 2010, the per use rate.

MR. HAWES: Your Honor, the e-mail was 2010, but it described it as a typical rate. It did refer to it as something -- it was just a rate that was out there. It was not specific to 2010 .

THE COURT: Overruled.

MR. SNYDER: There is no
foundation that was a typical rate.

THE COURT: You can cover it on cross-examination. It's overruled.

MR. HAWES:
Q. What was that typical rate, Mr. Nawrocki?

MR. SNYDER: Your Honor, this is
beyond the scope. There was nothing disclosed about Mr. Nawrocki relying on --

MR. HAWES: I'm not asking if he relied on it. It is in the report that he discussed that rate.

THE COURT: Overruled.

BY MR. HAWES:
Q. Mr. Nawrocki, what was the typical rate for the per user rate expressed in that e-mail?
A. That e-mail referred to a ten cents per user rate, or I'm sorry, ten cent per use rate, I should say, a dollar per user, ten cent per use.
Q. Could you reiterate for us how many uses there were in this case?
A. $\quad 7,099,000,000$.

MR. HAWES: No further questions,

Your Honor.

THE COURT: Mr. Snyder.

MR. SNYDER: May I approach the witness, Your Honor?

THE COURT: Yes.

MR. SNYDER: Thank you.

CROSS-EXAMINATION
BY MR. SNYDER:
Q. Good morning, Mr. Nawrocki.
A. Good morning.
Q. You're being paid for your time to testify in this case; correct?
A. Yes. Our firm is being paid on an hourly basis.
Q. What is your rate?
A. My rate is 550 an hour. My firm's rate is 550 an hour for my time.
Q. Approximately how many hours of your time have you spent on this case?
A. I don't recall a specific number, but more than 200 hours.
Q. How many hours has your team spent on this case?
A. My team has spent hundreds of hours on this case. There was numerous, thousands of spreadsheets, documents, hundreds of hours.
Q. Mr. Nawrocki, you understand that the hypothetical negotiation date for your opinion is in 2005?
A. That's my understanding.
Q. You don't have an opinion, do you, on whether or not the '550 patent is infringed by Google Earth?
A. I don't have an opinion on that.

That was an analysis of Dr. Castleman.
Q. That's just an assumption that you make for purposes of your analysis?
A. That's correct.
Q. And you understand that if there is no infringement, then there would be no damages; correct?
A. That's correct.
Q. You also have no opinion on the validity of the '550 patent?
A. That's correct, that's being debated by other experts in the case.
Q. And you understand that if the patent is invalid, then there is no damages; correct?
A. Yes, that's my understanding.
Q. Part of your analysis is the -- is based on what you called a hypothetical negotiation?
A. Yes. We had that slide with the factors on it leading to a hypothetical.
Q. And the purpose of the hypothetical negotiation is to determine what ACI and Google actually would have agreed to in 2005; is that right?
A. Yes, under certain assumptions.
Q. Under certain assumptions.

During the parties' negotiations in -- withdrawn.

You understand that the parties actually had some negotiations in 2006; correct?
A. That's my understanding.
Q. And that was very close to the hypothetical negotiation date that we're using for purposes of this analysis?
A. Yes. 2005 , middle of 2005 was when the press release was out and they released Google Earth, so 2006 would be within the year or so afterwards.
Q. During the parties' negotiations in 2006, there was not any mention of a royalty based on a per session amount or a per use amount, was there?
A. Not to my knowledge. Well, I shouldn't say that. There was a percentage applied or discussed, but not a dollar amount per unit.
Q. And that percentage, we'll get to that in just a moment. That percentage was not a per use amount, was it?
A. It wasn't a per unit amount, it would have been a -- I just want to make clear. I view it as still running, but not a per unit amount.
Q. Mr. Nawrocki, I didn't ask you if it was running or not, I asked you if it was an amount per use?
A. Not per use, it's percentage.
Q. Just to be clear, in the parties' discussions in 2006, nobody, either Google nor ACI, mentioned a per session or per use royalty; correct?
A. Not to my knowledge on a per unit basis.
Q. Now, would you agree with me that strong evidence of what the parties would have actually negotiated is evidence of what they
actually talked about?
A. I didn't follow your question.
Q. That's a poor question. I'll try and reword it.

Would you agree that what the parties actually did is strong evidence of what they would have done in your hypothetical negotiation?
A. I'm not going to weigh the evidence. I would say it's a consideration. What the strength of it is I would say is something I considered.
Q. We'll let the jury make that factual decision.
A. That's fair.
Q. Would you agree, Mr. Nawrocki, that what the parties did in -- at the time of the hypothetical negotiation would be at least some evidence and relevant to what they would have done in your hypothetical negotiation?
A. I would say it's a fair consideration.
Q. Now, could you please bring up, Mr. Ang, Plaintiff's 122 .

I don't think that's the right document. Let's try Plaintiff's 13, please.
A. Is it in my binder as well, I assume? Just so I'm clear, do I have that in my binder as well just so I can see it?
Q. Why don't you turn in your binder, please, to Plaintiff's -- PTX 13 in your binder.
A. PTX 13?
Q. PTX 13, yes. They're not quite in order.
A. Okay. I have 213 and 214. I have the PTXs, but I didn't see the PTX 13. 213, 214. Oh, you know what, you're right, they're not in order. I have 13. Okay.
Q. This is the first e-mail that Mr. Mayer sent to Google to contact them about Google Earth; correct -- I'm sorry, about the '550 patent?
A. I don't know if it was the first one. I know there were various correspondence in or around 2006 .
Q. You're not aware of any that came before this one, are you?
A. I don't recall. There are several

I have seen.
Q. And you were in the courtroom when Mr. Mayer testified?
A. Yes.
Q. And did you hear him testify that this was the first e-mail that he sent to Mr. Jones?
A. I don't remember if he said it was the first, but I remember there being a discussion about his e-mails to Mr. Jones.
Q. And in this e-mail, he attached a proposal; correct?
A. I remember seeing a proposal. It says down below there is a copy of a short presentation, so I believe I have seen that before.
Q. And that was about the -- it was about their licensing proposal?
A. I believe so, but do you have the document?
Q. I think we might have to come back to that one, Mr. Nawrocki. I'm sorry, I got the wrong number here. So we're going to have to find that.
A. Okay.
Q. All right. Now in August of -that message was in January of 2006 ; right?
A. Yes.
Q. Now in August 2006 , ACI suggested a price for Google to purchase the '550 patent?
A. There was some discussion that I have seen in the documents as well as here at trial about different proposals, so I don't know which one you're talking about in August. If I could see that.
Q. Sure. If you could look at Defendant's Exhibit 1071. And if we go, please, to --
A. I would be happy to look at the screen, I just don't seem to have that one either, unless they're not in order.
Q. I'm pretty confident that it is in there. It would have been right near the 13. Why don't we take a look at the screen.
A. Okay. Sure. Again, the number you said was PTX 1071?
Q. 1071 .
A. Okay. I don't seem to have it
here.

THE COURT: It is in your book.

It's right before, a couple of pages.

BY MR. SNYDER:
Q. It's before the deposition transcripts, sir.
A. I got it.
Q. And we can look at this screen and we can make this a little larger so the jurors can see. This is an e-mail from Mr. Mayer to Mr. Jones in August of '06; correct?
A. Yes.
Q. Q. And he says they want to keep Mr. Jones up-to-date about a recent discussion he had with the CEO, Andreas, regarding the patent licensing?
A. Yes, I see that.
Q. And he says, "I convinced him that a price on the order of 3 to 5 million would be acceptable at this time."
A. Yes, I see that.
Q. "And that was given that the number of potential buyers is limited to a handful and it would require substantial time
and effort to get a better deal."
Do you see that?
A. Yes.
Q. Now, this was a proposal to
purchase the '550 patent, right?
A. They talk about patent licensing here either for purchase, or I believe they were talking about investments and other options.
Q. This proposal, though, you read this wording and you understand that that's a proposal to purchase the patent for 3 to $\$ 5$ million?
A. I don't have a conclusion on that based upon my read of the collection of documents, and my discussions where they had looked for a variety of options.

So this talks about 3 to 5
million. As I talked with them numerous times, and heard the testimony, and saw the documents, they were always considering a package where they would have a joint relationship with them.

But this would be one piece of that that was discussed.
Q. Mr. Nawrocki, your company does IP
evaluation?
A. Yes.
Q. And would you agree with me that a purchase of a patent is more valuable than a license to a patent?
A. It depends on the patent certainly, but all else being equal, if you buy the patent, then you have the full right to it. That generally would be more valuable. I can't think of a situation where it wouldn't.
Q. So you would assume --
A. Some purchases have other terms during the purchase. There are sometimes a license back, sometimes there are other clauses.

Generally, a purchase to license could be more valuable, it could be more valuable.
Q. It was a pretty simple question. You agree that a purchase of a license would be more valuable -- I'm sorry -- a purchase of a patent would be more valuable than a license to the patent?
A. I've been doing this for a lot of years and that could be the case. It's just that sometimes a license, by owning the patent,
you sometimes have duties to defend, you have to litigate things. You might have other costs that potentially with licenses you would be required to do.

Sometimes with a purchase, you might say, you know what?

I'd rather just take a license, for example, for a pharmaceutical maybe than own a patent and do other things with the patent.

So it depends. But, in general, for simple purposes owning the patent is better than just getting a license.

But there's sometimes complications that you have as a result of a patent that might have other rights due to other licenses. It's not all that simple. In general, a purchase would be better than a license.
Q. Mr. Nawrocki, you never saw anything related to the '550 patent to indicate that a license to the patent would be more valuable than purchasing the patent, did you?
A. Well, it depends on the license, I guess.
Q. You never saw anything, in the terms of license, that ACI suggested to Google to indicate that that license would be more valuable than purchasing the patent, did you?
A. I didn't see anything that was down to a License Agreement with clauses. There were discussions and e-mails, but I didn't see it in terms of clauses such as that that were identified.
Q. Mr. Nawrocki, you're familiar with the difference between an exclusive license and a non-exclusive license?
A. Yes, an exclusive means that you are the only person that get the license.

Non-exclusive would mean that other people would get the license as well.
Q. And for purposes of the hypothetical negotiation, you assume that the license would be non-exclusive, isn't that right?
A. Yes, for purposes of the negotiation -- and I'm pausing a little bit -because I believe the prior e-mail talked about an exclusive offer.

But for purposes of negotiation, would be assumption of a non-exclusive, though there had been some discussion points about exclusivity within these discussions.
Q. I was just asking about the hypothetical negotiation, Mr. Nawrocki.

You assume, for purpose of the hypothetical negotiation, that it would be a non-exclusive license?
A. That would be the assumption.
Q. And that means that ACI would still be free to license that patent to other people?
A. If there was other people using it, they would have that ability, or potentially they would use it themselves. But, yes, with a non-exclusive, they would have additional rights.
Q. And, generally speaking, a non-exclusive license is less valuable than an exclusive license?
A. I couldn't say a hundred percent, but generally that's the case, depending upon the specific materials. All else being the
same, an exclusive would be more valuable.
Q. Now, in this proposal in August of 2006, this was for a -- this was a lump-sum payment, correct?
A. It would appear to be that. It doesn't give the timing of it. It talks about in the order of 3 to $\$ 5$ million. It doesn't say lump sum or up front, but it says 3 to 5 million.
Q. In this e-mail, ACI does not suggest any kind of running royalty, do they?
A. I don't believe they do.
Q. And they don't suggest in this e-mail any kind of per-use or per-session rate, do they?
A. I'm just looking down below in the e-mail. It says that we would -- if you go down below at the last paragraph -- it says, "We would also like to start a discussion about possible terms. We would use Google Earth content and location-based installations. We have some unsolicited offers and requests from customers."

So what --
Q. Mr. Nawrocki --
A. -- would all that be is, I don't know what aspect -- how that would relate to their negotiations.
Q. Mr. Nawrocki, there is nothing in this paragraph that you just read for us that says anything about a per-session rate, does it?
A. Not a per-session rate. That's correct.
Q. There's nothing in this paragraph that you just read for us that related to a running royalty?
A. That's correct. It shows other aspects they were considering as well.
Q. The possible term they are talking about here is, ACI using Google Earth content in locatio-based installations, correct?
A. Yes. So there are a couple aspects that I was just going to explain.
Q. Mr. Nawrocki, if ACI -- we'll, I'll withdraw that question. I'm sure if you want to explain further, I'm sure your lawyer can ask about it.
A. Okay.
Q. In July of 2006, Google
communicated its feelings about the '550 patent to ACI, correct?
A. I don't remember the time period, but there was some discussion from Google as well.
Q. Google told ACI that the most that it would be willing to pay was if it was a million dollars, isn't that right?
A. In some period of time there was a million. There were various numbers talked about. There was another e-mail we saw that talked about other amounts.

MR. SNYDER: Could you -- could you bring up, please, Plaintiff's Exhibit 15?

BY MR. SNYDER:
Q. This is a message from Google's Michelle Lee to Patrick Paulisch at ACI?
A. Yes.
Q. Okay. If we can go down to the next e-mail, this is an e-mail from Mr. Paulisch to Ms. Lee?
A. Yes.
Q. And she is -- he is summarizing the conversation that they had in a telephone call in July?
A. Yes, I see that.
Q. And you heard Mr. Mayer testify on Monday about that phone call, didn't you?
A. Yes.
Q. You heard him testify that he participated in that phone call?
A. That's my recollection.
Q. In this e-mail, Plaintiff's 15, Mr. Paulisch reports that Google tell them that the most Google would be willing to pay was $\$ 1$ million to buy the patent?
A. There's a couple of things there.
Q. Mr. Nawrocki, is it the e-mail or not?
A. It is.

If you look at the next point it says, "Instead of buying" -- and this is reflecting what Google said was a fair summary -- "instead of buying, Google views licensing on an exclusive or non-exclusive basis as a valid alternative, maybe even combining with
contracted work."

That was discussed in addition to the one million.
Q. I'm asking you what this says was the maximum that they were willing to pay.

Mr. Nawrocki, it says the maximum they were willing to pay was a million dollars, right?
A. I see that.
Q. It identifies these licensings as valid alternatives?
A. Yes.
Q. It doesn't identify any rates for those?
A. No, but it says Google views licensing as an alternative.
Q. It does not indicate any willingness to enter into a license on a per-session basis, does it?
A. It doesn't say that.
Q. It doesn't indicate any
willingness to enter into a running royalty agreement, does it?
A. It doesn't say that, right.
Q. Now, if we look at the bullet up above or the first line of that bullet, it says "Even if the patent would be a hundred percent air tight, or at least meeting Google's comfort level."

Do you see that?
A. Yes.
Q. And you heard Mr. Mayer testify that that was related to the validity of the patent?
A. I was here for his testimony. I don't recall specifically the validity. But there was some discussion about it.
Q. Do you recall Mr. Mayer saying that he understood this to mean that if the patent were a hundred percent defensible?
A. I don't remember exactly what he said. Air tight would mean that there would be -- I don't know what he meant by "air tight."

But that's the discussion between Google and ACI, meaning there might not be issues. At least that's what they are trying to assume there.
Q. Now, and that their -- let me go
back a moment -- one of your assumptions, as we talked about a few minutes ago, was that the patent is valid?
A. Yes.
Q. And that's very similar to Google telling ACI that it would only pay a million dollars if it were a hundred percent air tight, isn't that right?
A. I couldn't say if it was similar or not. That's their terms, not mine.

But I would say valid and infringed would be the assumption that we had. What they meant by that, I agree with the statement.
Q. Now, this $\$ 1$ million is to purchase the patent, correct?
A. It says, the maximum price they would be willing to pay is 1 million to buy the patent. One million to buy the patent.
Q. Which is more valuable than a license?
A. With the exceptions that we talked about.
Q. Now, if you have also been in the
courtroom and we've seen evidence regarding ACI's response to this e-mail, right?
A. Yes. Again, I believe there was a back and forth between the parties.

MR. SNYDER: Could you bring up, please, Defendant's Exhibits 1004 .

BY MR. SNYDER:
Q. Now, this is another exhibit that we've seen before, you seen you've seen this in the courtroom right, Mr. Mayer -- I'm sorry -Mr. Nawrocki?
A. Let me just read this. There are several...yes, I recall seeing this.
Q. And in this -- this is from September of 2006?
A. September, yes.
Q. Which is near the time of the hypothetical negotiation?
A. About a year afterwards.
Q. And in this message, Mr. Mayer says that it is -- he's attaching a letter regarding the sale of the patent? The first line.
A. Oh, regarding sale of the '189,
the virtual globe patent.
Q. And that's the patent that preceded, the original patent that preceded the '550 patent, correct?
A. I don't know if that was the number that directly preceded it.
Q. No. It was the original patent?
A. I'll take your word for it.
Q. You didn't understand this to be about some other patents not involved in this case, did you?
A. Not that I recall. I just know that the patent issued in this case is the '550.
Q. This e-mail is about purchasing the patent, correct?
A. Yes, or regarding the sale of the virtual globe patent, the '189.
Q. And that would be a purchase by Google of the -- of ACI's patent?
A. Of the '189 they refer to, yes.
Q. And this is the amount -- they were proposing an amount after taking steps to find out a reasonable market value based on a potential return from other options and then
selling it to you, is that right?
A. Yes, and the next paragraph is
informative as well in terms of what it doesn't take into account.
Q. Right. It does include their steps to find out a reasonable market value based on potential return?
A. Yes, but it says in the next sentence, it does take into account our expectations of a much higher value in the future due to the development of the market.
Q. And they did include, didn't they, a proposal to purchase the patent, to have Google purchase the patent?
A. Again, I believe there were different options that were considered with the overall tactical options that they were considering.
Q. Let's take a look at the next page so we can look at those options?
A. Okay.
Q. At the bottom of this page --
we're on the second page of Defendant's Exhibit 1004 -- there is a list of five different terms.
A. If you might just go back to that prior document. The other one. Let me make sure I understand from the prior document.

No. The e-mail that we had previously?

Because this was -- I guess this was the Michelle Lee. I see. There was a copy to Mr. Jones.

Okay. So the next document you had was to Michelle. I see.

Okay. I'm with you.
Q. You reviewed these documents before today, haven't you, Mr. Nawrocki?
A. I saw Michelle on there and I was looking at it in terms of Michael Jones, so --
Q. You reviewed these documents as part of your preparation in the case?
A. As part of my analysis.
Q. So it's not like you're seeing these for the first time?
A. That's correct.
Q. And you've been in court all week, haven't you?
A. Yes.
Q. And you've heard all testimony
about all these documents?
A. Yes, I have.
Q. So these aren't new to you, are they?
A. They are not.
Q. Now, in this proposal, ACI says, "We offer the following." And one of the terms is that ART+COM" -- which is after No. 5 -- "ART+COM receives a one-time payment between 3-1/2 to 5 millin euros."
A. Down at the bottom?

Yes.
Q. Mm-hmm. And that was a lump sum amount?
A. Yes, a one-time payment would be a lump sum.
Q. There is no indication of a running royalty?
A. Let me just see.

The next sentence says, "Depending
on the extent of back license and other conditions, we agree on it."

So I don't know if the back
license was referring to past use there, or what
specifically they had in mind.
Q. Mr. Nawrocki, there is no
indication in here of a running royalty, is there?
A. Not a going forward running royalty, that is correct.
Q. There is no indication here of a per-session royalty, is there?
A. That's correct.
Q. Now, ACI and Google didn't reach a deal regarding the '550 patent, did they?
A. That's correct. That's why we're here.
Q. And ACI explored other options for the two to sell or license the patent, correct?
A. There was some other discussions back and forth between the parties.
Q. Well, one of the companies that they contacted was Nokia?
A. Yes.
Q. And one of the companies that he they contacted was Microsoft?
A. Yes.
Q. And Nokia responded to them and
said that they weren't interested, isn't that right?
A. Is that a question?

Okay. I believe that neither

Nokia nor Microsoft took a license with them. Their specific response, I don't recall.
Q. In your report, Mr. Nawrocki, didn't you say that you understood that Nokia said that it stated that it was not interested in a license at the time?
A. That sounds familiar.
Q. And isn't it also true that Microsoft didn't even bother to respond?
A. Yes, some companies don't respond.
Q. And, in this instance, Microsoft didn't respond to ACI's offer to license the '550 patent?
A. That's my understanding.
Q. Now, Mr. Nawrocki, in determining what kind of terms the parties would actually come to, do you agree that it would be relevant to consider the kinds of agreements that they've negotiated?
A. Yes, that's a consideration.
Q. Did you look at any License

Agreements from ACI for the $' 550$ patent?
A. ACI was not able to license the '550 patent.
Q. So of all of the companies and people in the world, ACI has never succeeded in licensing the '550 patent to anybody?
A. To my knowledge, Google is the only company -- I shouldn't say that -- to my knowledge Google is the only company that has been accused at this point.
Q. Mr. Nawrocki, I really would appreciate it if you would answer my question.
A. I'm not aware of any of other licenses or any licenses that ACI has on the '550 patent.
Q. ACI has never succeeded in licensing the patent on a per-session basis, have they?
A. That's correct.
Q. ACI has never succeeded in getting someone to pay them a running royalty for the '550 patent?
A. That's correct.
Q. And ACI has certainly never gotten somebody to pay them a cent or a cent-and-a-half for the '550 patent, did they?
A. That's my understanding.
Q. In fact, ACI has never received any revenue for the '550 patent?
A. Unfortunately, that's correct.

MR. SNYDER: Could we turn to 115, please.

Turn, please, to Page 4.

BY MR. SNYDER:
Q. This is a slide that you talked about during your direct, Mr. Nawrocki?
A. Yes, this is that summary of direct revenue that we talked about earlier.
Q. In this document, Mr. Nawrocki, you pointed out that Earth Pro revenues had increased substantially in 2006 compared to $2005 ?$
A. Yes, by the top bullet point there, a hundred percent -- Earth Pro revenues increased by a hundred percent compared to 2005.
Q. Now, there's nothing in this document indicating what they expect to make
over the next several years from Earth Pro, is there?
A. Yes, there is.

Not on this page, but on other pages within the document there is. If you look at Page 9, it talks about growing at 38 percent.
Q. And that's Pro revenue?
A. That's the Pro revenue expected to grow by 38 percent per year.
Q. And then you also pointed out that on this Page 4 of the slide that there was a reference to Earth Enterprise revenue increasing by 200 percent compared to 2005 , right?
A. Earth Enterprise revenue increased by 200 over 2005 .
Q. So that's 2006 compared to 2005?
A. Yes, that's true.
Q. Now, the revenues from Pro in 2005, were pretty small, weren't they?
A. Relatively speaking to other products within Google.

But in Pro, they are the second
largest -- if you look at 2006 -- it's 11
million compared to the second highest one, 14
million for Maps.
Q. In the Geo group, correct.
A. Within the Geo direct group or direct revenue.
Q. Now, this was -- in 2005 Earth Pro was sold for a licensing fee, as you pointed out, correct?
A. Yes.
Q. And Earth Enterprise was sold for a licensing fee also?
A. Yes, Pro was for $\$ 400$. On the few pages before it, enterprise varied from approximately 100 to 400 .
Q. And Google had introduced Google Free?
A. Yes.
Q. And before 2005, had there been any version of Earth or the Earth viewer product that was free?
A. Not to my knowledge. I couldn't say affirmatively, but not to my knowledge.
Q. Now, you pointed out that the number of uses of Earth is about 7.1 billion, the number of sessions?
A. Yes, from the period of 2000 -the middle of 2010, through April of this year in the U.S with those adjustments.
Q. Did you determine what portion of those are from a free version of Google Earth versus a licensed version of Google Earth like Pro or Enterprise?
A. There was some information that Google introduced involving applications that showed how many were iPad, iPod, things such that.

Why I'm hesitating is, there was some information on Free. I don't remember having the Free identified by session.
Q. Mr. Nawrocki, in your opinion today --
A. Yes.
Q. -- what you've described for the jury, did you identify the proportion of those 7.1 billion uses that are free versus ones that the user had to pay for?
A. I understand your question now.

And, so, the seven billion are the
total uses. That would include all the uses by
the different platforms.
Q. Would you agree with me that it's more likely that people are going to use a free version of a product than one that they have to pay for?
A. It depends on what we are they're using it for. So a business user who is trying to use it in an oil and gas application where they need to make all sorts of measurements, he's more inclined to probably use the paid because it has more features. Consumers would probably use the free application on their phone or I use the free version on my desktop at home, so it depends on the use. So again, a business user in a real estate or oil and gas would probably use the paid version.
Q. Have you identified for the jury what proportion of Google users are these oil and gas people that might use it more often?
A. That the data that they produced doesn't show that, it shows certain information by customer.
Q. That was your example, Mr. Nawrocki, I'm asking what you told the jury
today?
A. The data that Google produced doesn't break it down in terms of sessions by customer, they'll break it down by platform, but either for privacy or other reasons, they don't provide the session information for a specific customer.
Q. Now, in -- you pointed out looking at this document that Earth's was about 50 percent of the revenue for the Geo group in $2006 ?$
A. And that's why I paused. For the 50 percent of the direct revenues. There was another slide that had indirect which was I think more identified for, for the direct revenues it was more than 50 percent.
Q. It was just in the previous year that Google had introduced a free version of Earth?
A. Yes, so this was 2006. It was 2005 when they introduced the free version.
Q. You didn't identify for the jury any documents indicating whether Google expected Earth Pro or Earth Enterprise to continue to be
about 50 percent of Geo revenues in subsequent years, did you?
A. Well, I'm pausing because there is information I have, but I'm -- I'm pausing on the stuff I have after 2005 .
Q. Mr. Nawrocki, I'm asking for what you presented to the jury.
A. So there is information that I have, but I haven't presented that to the jury, but there has been some discussion with the courts.
Q. My question, Mr. Nawrocki, was very specific.
A. Go ahead.
Q. Did you present to the jury any information regarding Google's expectations about the amount, the percentage of Google Earth revenue for the Geo segment?
A. I know that information, but that information hasn't been disclosed.
Q. Currently all of the versions of Google Earth are free; correct?
A. When you say currently, you mean as of today?
Q. I mean today.
A. Why I am pausing is because there was a bit of testimony that the Enterprise product that was sold for hundreds of dollars per user has I believe no longer been supported or minimal support, but I don't believe it's available today currently, so as of today I believe it's just -- \quad believe it's just free.
Q. That's a question I'm asking, Mr. Nawrocki. And if you could answer my question, that would be helpful.
A. The only reason I'm pausing, when you're saying today, I want to make sure they don't do it as of whenever. To my knowledge currently only available free, I don't think there is a charge if you download that app on your phone.
Q. So Google does not receive any money when people use the Google Earth product; correct?
A. Well, I would disagree with that. Google receives plenty of money in ads when they use that free product.
Q. Mr. Nawrocki, currently Google
does not include any ads in the Google Earth product, does it?
A. There is a variety of ads or advertisements or information that they receive from this network effect that we talked about. When you go on Google --
Q. Mr. Nawrocki, can you answer my question, please?
A. I am.
Q. I don't think you are.
A. Go ahead.
Q. Does Google include in Google Earth any ads?
A. If you're referring to banner ads, not to my knowledge. Is there other advertising means that Google can monetize? My understanding is yes.
Q. I didn't ask you about monetizing, Mr. Nawrocki. Perhaps I'm not communicating very well. Ads that are in Google Earth, are there any ads in Google Earth today?
A. When you're saying ads - -

MR. HAWES: Your Honor, your order concerns how far out we can get into
information. I think this is going beyond what your order limits.

THE COURT: Overruled.
A. So when you're saying ads, if you mean advertisements, there is advertisements and advertising revenues that Google receives from that. Is there an ad that shows up like a commercial on Google Earth? That doesn't happen.
Q. That doesn't happen?
A. Doesn't happen on Maps where an ad would necessarily show up.
Q. There are three different types of accused products; correct? There is Google Earth 7 and its predecessors; right?
A. Well, I believe it's Google Earth 8, I think, and predecessors.
Q. Is that your understanding?
A. There is a group 2 that was talked about in Dr. Castleman, and there were several groups, he identified the accused products.
Q. So let's -- his group 1 was -I'll represent to you was Google 7 and previous versions?
A. That was group 1 .
Q. And that version does not contain ads; correct?
A. I didn't look at it by version in terms of whether the ads were there.
Q. Mr. Nawrocki, you're the one that just brought up the category. I'm trying to get some answers here.
A. I understand. I don't know by version which one had advertisements on it.
Q. Google 8 for Android does not include any ads, does it?
A. And again by ads, do you mean commercials showing or banner ads?
Q. That's correct.
A. To my knowledge, no, but that's not how they obtain advertisements.
Q. And Google Pro does not contain any advertising, does it?
A. To my knowledge there is
advertising and advertising revenues they receive based upon Google Pro and all the usage by the users of these products. Again, there might not be an ad showing on the product, but
that's not to say in the back they don't receive money from those ads from the advertisers.
Q. Mr. Nawrocki, can you answer my question, does Google Pro contain ads?
A. Let me tell you why I can't. Because you're using the term ads as a broad representation. We might all know what ads are, like an advertisement that shows up on TV or a banner ad, and to my knowledge there are none of those done on those products. However, that's not to say Google is not receiving revenues from advertisements or Google is not receiving revenue from their advertising model for those products. That's my hesitation.
Q. My question was, does Google Pro contain ads, can you answer that question?
A. Not banner ads to my knowledge.
Q. Does Google Pro contain any kind of ads?
A. Well, if it's any kind of ad, I would say there are advertising revenues they receive.
Q. I didn't ask you whether it contained advertising revenues, Mr. Nawrocki.

I'm trying to ask you a simple question. Does Google Pro contain ads?
A. I don't know for sure.
Q. Has Google Pro ever contained ads?
A. I don't know for sure.
Q. Google Enterprise does not contain ads, does it?
A. Not to my knowledge.
Q. Google Enterprise has never contained ads; isn't that true?
A. That's the business application where they're receiving the 300 . To my knowledge they don't receive ads or ad revenue on that. They might, but not to my knowledge.
Q. And the free versions of Google Earth, they currently do not contain ads, either; correct?
A. What the current state is in terms of what ads they show, I know when you go on Google Earth there is a variety of pop ups, balloons, et cetera, within that overall Google Earth experience. What their monetization of that is, if you want to call that an ad. I know when I go on Google Earth, I'm looking for

Walgreens, the Walgreens popped up, several other Walgreens popped up. Whether or not Google Earth is monetizing that, I couldn't say for certain. But those ads are showing up. I will get Walgreens banners and everything else showing up all over the Google Earth platform.
Q. So to the best of your knowledge the free versions of Google Earth do not contain any ads, do they?
A. How Google is specifically monetizing all of that information that shows up, I couldn't say.

MR. SNYDER: Thank you,
Mr. Nawrocki. No more questions.
REDIRECT EXAMINATION
BY MR. PARTRIDGE:
Q. Mr. Nawrocki, there were several discussions of what was happening in 2006 . Do you remember?
A. Yes.
Q. Could we pull up Plaintiff's Trial

Exhibit 15. And if you could -- if we could scroll down to -- there we are. This is that summary of the call, do you remember the summary
being discussed?
A. Yes.
Q. And I remember counsel for Google discussed the second bullet point and the third bullet point. Look at the first bullet point because that wasn't ever discussed. Do you see that?
A. Yes.
Q. Google viewed and told ACI viewed this patent as a nice to have patent. Do you see that?
A. Yes, I do.
Q. Is the assumption in the hypothetical negotiation that the patent is nice to have?
A. No, I haven't heard that within the hypothetical construct. It's supposed to be a valid and infringed patent and you're supposed to work out a deal for this valid and infringed patent.
Q. So the assumption is the patent is infringed; right?
A. Yes.
Q. Not that it's nice to have?
A. That's correct.
Q. Now, were you here when Mr. Mayer testified on Monday?
A. Yes, I was.
Q. And did Mr. Mayer testify about a discussion that he had with Mr. Michael Jones?
A. Yes, several discussions, I think.
Q. And what did Mr. Mayer testify with regard to, what Mr . Jones told him about whether Google was using the patent?
A. My recollection was there was some discussion about them not using it or not thinking they were using that patent. There was other means they were doing. I can't recall the exact testimony, but basically suggesting they weren't using the patent is what I recall.
Q. So you for all this 2006 stuff we saw, at that point Mr. Mayer told us that he had been told they weren't using the patent?
A. That's my recollection.

MR. HAWES: No further questions,
Your Honor.
THE COURT: Any recross?
MR. SNYDER: No further questions,

Your Honor.

THE COURT: Now comes the time for the jury to ask questions. If any members of the jury have questions.

JUROR: Your Honor, may I use the restroom really quick?

THE COURT: Why don't we take our ten-minute morning break. We're going to truncate it a little bit. We'll recess for ten minutes.
(Jury leaving the courtroom at 10:48 a.m.)

THE COURT: Sit down. Is there anything further before we break?

MR. HAWES: Not from plaintiff,

Your Honor.

MR. SNYDER: No, Your Honor, although we are going to have a motion. I don't know what question the jury may come up with, but we are going to have a motion at the close of plaintiff's case, and under 50(a). And I'm also going to have a motion specific to Mr. Nawrocki's testimony.

THE COURT: We'll deal with that
at the appropriate time. Let's recess for ten minutes.
(A brief recess was taken.)

THE COURT: Be seated, please.

Why don't we bring the jury back in.
MR. SNYDER: Your Honor, before the jury returns, may I be heard on an issue with Mr. Nawrocki's testimony or would you prefer that we take the jury's questions?

THE COURT: I prefer that we do the jury questions and then we'll have your Rule 50 motions. We'll have to have the jury out. Is it something that needs to be resolved before the Rule 50 motion?

MR. SNYDER: Depending on the questions we get from the jury, it may be.

THE COURT: Why don't you tell me what it is.

MR. SNYDER: The issue, Your Honor, relates to Mr. Nawrocki's testimony about a ten cent per user proposal. And at the time that Mr. Nawrocki mentioned that proposal, I objected that it was related to 2010.

ACI's counsel represented that it
was in his report. And it is referenced in his report, but that is incredibly misleading and contrary to Your Honor's order regarding the parameters of Mr. Nawrocki's testimony.

Mr. Nawrocki -- it is from -- that reference to a ten cent per user proposal is from 2010. It's Plaintiff's Exhibit 123 .

THE COURT: This is not something we have to deal with now. I want to bring the jury back in, get the question and then we'll let them take a break and then we'll come back and have all your motions.

MR. SNYDER: Thank you, Your
Honor. I will renew this if the questions relate to that per user amount.

THE COURT: We'll see what
happens.
MR. HAWES: Your Honor, can we bring Mr. Nawrocki back?

THE COURT: Yes. He should come up and sit in the stand.
(Jury entering the courtroom at
11:01 a.m.)
THE COURT: And now do we have any
questions from the jury for Mr. Nawrocki?

The jury has no questions.

So Mr. Haase, that concludes the plaintiff's direct case; is that correct?

MR. HAWES: Actually I need to enter the exhibits into the record, Your Honor, and then I can sit down.

THE COURT: Yes.

MR. HAWES: Your Honor, the plaintiff offers Plaintiff's Trial 158, 115, $167,271,45,350,55,72,73,198,66,190$, $200,31,160$ and 219.

THE COURT: Any objection?

MR. SNYDER: I object to 219, Your Honor. That is a 2010 document.

THE COURT: That's overruled. They're admitted into evidence.

MR. HAWES: Thank you, Your Honor. Plaintiff rest.

MR. SNYDER: And Defendants move into evidence Defendant's exhibit 1071 .

THE COURT: Any objection?

MR. HAWES: No, Your Honor, no objection.

THE COURT: That's admitted into evidence.

THE COURT: Members of the jury, we're going to recess for a little while now. We have some housekeeping matters before the Defendant begins its case and so we ask you to leave the courtroom. Please again, don't discuss the case while you're waiting for us to conclude. We'll try to make this as quick as we can.
(Jury exits)
THE COURT: Okay. Mr. Snyder.
MR. SNYDER: Should Mr. Nawrocki
be excused, Your Honor.
THE COURT: Yes. Now, he's
excused. Is he subject to recall?
MR. SNYDER: Not by us, Your
Honor.
MR. PARTRIDGE: Your Honor, there's a possibility we'll be calling him in our rebuttal case.

THE COURT: Okay. So thank you.
For the moment, Mr. Nawrocki, you're excused.
THE WITNESS: Thank you, Your

Honor.
MR. SNYDER: I don't have a menu up here. Your Honor, Defendants move under Rule 50A for a directed verdict. We also move to strike Mr. Nawrocki's testimony. There are several grounds for the 50 A motion, but let me start with the issue of damages in Mr. Nawrocki's testimony.

Mr. Nawrocki did not offer an opinion on damages. He identified a number of factors, but did not at the conclusion of his testimony identify any rate that he believed would be appropriate. In fact, they studiously avoided including any specific rate and presented their slide number 7, which has a royalty rate, a base of 7.1 billion sessions and leaves open the issue of a royalty rate and the total amount. Without having offered an opinion, there's nothing for the Plaintiff to rely on. It would be improper for the jury to rely on it. And Mr. Nawrocki's testimony should be struck.

A separate and independent reason related to or reason why Mr. Nawrocki's opinion
should be struck relates to his improper reference to a 10 cents per use communication. The only evidence of that is from a 2010 e-mail, which has been marked as Plaintiff's exhibit
123. When I objected to that e-mail,

Plaintiff's response was that it was in his report, but it is in his report only in the context of a 2010 hypothetical negotiation and their use of that e-mail and introduction to that, that evidence before the jury was in direct violation of Your Honor's order and extraordinarily prejudicial. And what I fear they're planning to do, because it is directly in Mr. Nawrocki's report, is use that information to suggest to the jury that a royalty of as much or a payment of as much as $\$ 700$ million would be appropriate given the 7.1 billion sessions that they've identified. This isn't speculation on my part. This is from Mr. Nawrocki's report. He specifically refers to a November 2010 e-mail from Pavel Mayer of ACI to Tim Porter of Google. And that's in that e-mail he says ACI stated that a typical user based licensing model would be on the order of $\$ 1$ per
usage, a usage based model in the order of 10 cents per usage. This is the e-mail that he was referring to and the testimony we objected to. Mr. Nawrocki then applies that to his sessions of 7.1 billion and comes up with a total of $\$ 710$ million. Having that in front of the jury is enormously prejudicial. It's also very clear, Your Honor, that Mr. Nawrocki only used that e-mail in the context of a 2010 hypothetical negotiation date. This is from paragraph 7 of his report as discussed throughout this report in order to determine the appropriate royalty that's applicable in this case, says I considered the rates ACI sought for licensing the patent at issue at the time of a
hypothetical negotiation in 2010 .
He then goes on to talk about the number of activations and continues in that paragraph to refer to that same 10 cents per user rate and the possible $\$ 710$ million. And I fear what they're going to do, Your Honor, is take Mr. Nawrocki's testimony and that 10 cents per use rate that was entered into over objection and suggest that there could be an
award of as much as $\$ 700$ million and that they would be, only be conservative by asking for a cent and a half and therefore order a hundred and plus million dollars. That is exactly the kind of prejudice that the Federal Circuit has repeatedly recognized. If you anchor by using some gigantic number and then pretend you're being conservative or restrained by using a smaller number, it's completely inappropriate and prejudicial and it's directly contrary to Your Honor's instructions about the 2005 date, not the 2010 date.

So Mr. Nawrocki's opinions and testimony should be struck and I believe it would be appropriate to issue a curative instruction to the jury that that 10 cents per use amount cannot be used because of the date of the hypothetical negotiation.

THE COURT: As I understand that document, it's referring to a general concept of royalty rates, not tied in any way to a particular time and I think that's the purpose for which he was using it. So I'm going to deny your motion to strike. Is there more you would
like to say about your Rule 50 motion?
MR. SNYDER: There is, Your Honor.

Defendant Google is entitled to a directed verdict on the issue of infringement for several reasons. First, there is no evidence that several steps of the only independent claim, Claim 1, are performed. In particular, there is no evidence that the two subparts of Step F, storing and representing, are ever performed. The only evidence that's been presented was from Mr. Castleman and all he testified to, all he said was yes, they are performed, in response to a leading question. He presented no testimony, he presented no explanation. That's all there was.

Second, related to that same subsection F, there is no evidence, and in fact, Mr. Castleman agreed that you do not have a representation of or a request for each of the subsections. And let me try and be a little bit clearer. The second subpart of Step F of Claim 1 requires that you request each of the subsections. Mr. Castleman was asked on direct, do you have to request each of the children in
order to have infringement? And he said yes, which is consistent with Your Honor's ruling on claim construction. He was then asked, in the Google product, do you request each of the subsections? And he specifically testified that he did not do that analysis. So there is no evidence in the record on which the jury could find that that step has been met.

Third, Your Honor, related to Step
G, there is no evidence that Step G is ever performed. Mr. Castleman testified consistent with the Court's claim construction, that you have to go through each of the four parts of Step F before you perform Step G. You can't do G until you finish F. Because Step F is never performed or there is at least insufficient evidence for the jury to find that Step F is performed, you can't perform Step G. There is no evidence on which the jury could find that there is.

There are two other separate issues related to infringement, Your Honor. First, one part of Mr. Castleman's categories relates to the Enterprise products and to the

Audi products. Mr. Castleman did not testify that the use of those products by Google infringes. In fact, he admitted that he has no evidence of it. All of the claims at issue in this case are method claims, 1, 3, 14 and 28. You have to of course perform the method in order to infringe. And Mr. Castleman agreed that merely providing the software does not infringe those methods. That software is then provided to other users, like the users of the Enterprise product, it is then provided to Audi, and he does not have any evidence and had no opinion on whether the users of those, whether Google uses those products. That is somebody else. Google can't be held responsible for that.

Finally Your Honor, and this will relate specifically to the jury instructions, should we get that far, but this should be taken out of the case. There is no evidence of Doctrine of Equivalence. Mr. Castleman did not provide an opinion on Doctrine of Equivalence and there should be no further reference to that in the case whatsoever.

The last issue, Your Honor, relates to whether the ' 550 Patent claims patent eligible subject matter and it does not. We previously brought a motion under Section 101 and Judge Andrew denied it. In part he denied it because there was an ordered combination of steps. But Mr. Mayer and Mr. Schmidt both confirmed that there is nothing about their, their claims that includes any specific hardware. There's no invention for the performance of those ordered steps. And as the Federal Circuit recently identified in TLI, if you're going to pass step number two and have that inventive element, you have to actually have invented something. And one way you can do that is with specialized hardware. That is not present here. The only reference is using a computer and both Mr. Mayer and Mr. Schmidt testified that they used a commercially publically available computer for the performance of those tests. The thing that's left then is this algorithm that describes the steps and that should not be eligible for patent protection in the United States under current
law.
I would like your -- I've tried to describe these as best I can, Your Honor. I would like the permission to file in writing on your motion under 50A, but I do believe this identifies all the relevant grounds that would justify finding a verdict in Defendant's favor.

THE COURT: All right. You may file a written motion. I am going to deny the motion with respect to everything, except I have one concern, and that is I did not hear any evidence about the Doctrine of Equivalence.

MR. SPEARS: The Court is correct, and to that extent, ACI's motion should be granted. It should not appear in the jury instructions or the verdict form.

THE COURT: All right. Thank you. The Defendant's motion for judgment on the Doctrine of Equivalence is granted and that will be removed from the final jury instructions. In other respects, the Rule 50 motion is denied.

MR. SNYDER: Thank you, Your
Honor.
MR. HAWES: Your Honor, will you
want us to respond to the written submission?

THE COURT: Yes, I think you
should respond to the written submission. What is the written submission --

MR. HAWES: Can we have a page
limit?

THE COURT: Page limit. 10 pages each. Double spaced.

MR. SNYDER: Could we have 15,
Your Honor?

THE COURT: No, I think 10 is
enough.
MR. HAWES: Thank you, Your Honor. THE COURT: And why don't you file that 5 o'clock tomorrow and response to that, I guess noontime on Friday, is that doable? Do you need more time than that?

MR. HAWES: Can we have one day,
Your Honor? Can we at least have 5 o'clock.
THE COURT: 5 o'clock. Anything
further we need to address before Google begins its case?

MR. HAWES: Not from Plaintiff,
Your Honor.

MR. SNYDER: Nothing further, Your Honor.

THE COURT: Okay. Thank you. Why don't we bring the jury back in.
(Jury entering the courtroom at
11:20 a.m.)

THE COURT: Be seated. Please.
Welcome back members of the jury. We'll now proceed with Google's case.

Mr. Snyder.
MR. SNYDER: Thank you, Your
Honor. As Google's first witness, we call the corporate representative, Mr. Peter Birch. Peter Birch is an engineer and senior project manager at Google. He's going to testify about the background of the Google Earth product and how it operates and presents images on a user's device. He's also going to provide information about the financial aspect of the Google Earth products.

May I approach the witness, Your Honor.

THE COURT: Let him be sworn
first.

THE CLERK: Please state and spell
your name for the record.
THE WITNESS: $P-E-T-E-R$,
$B-I-R-C-H$.
PETER BIRCH,
the deponent herein, having first been duly sworn on oath, was examined and testified as follows:

DIRECT EXAMINATION
BY MR. SNYDER:
Q. Good morning, Mr. Birch.
A. Good morning.
Q. Could you please introduce yourself to the jury?
A. Certainly. My name is Peter Birch.
Q. Who do you work for?
A. I work for Google.
Q. How long have you worked for Google?
A. As of the -- coming Monday it will be ten years.
Q. What is your current position with Google?
A. My current position is senior product manager for Google Earth Engine.
Q. And what other positions have you held at Google?
A. I also work on basically as a role of $P M$ Emeritus for the Google Earth products. And then in the past I have been the sole product manager for the Google Earth product family.
Q. How long were you the sole product manager for the Google Earth family?
A. I started in 2006 until approximately 2012.
Q. Mr. Birch, what is Google?
A. So Google is a company. Our mission is to organize the world's information and make it universally useful and successful. We make products like Google Search and G-mail and various other products to really help people get access to information.
Q. What is Google Earth?
A. So Google Earth is an application that you can download on to your computer or phone or tablet, and it allows you to fly around
the world. So you can type in your home address, you can -- maybe you want to go back to where your parents came from and you want to learn about when they grew up. Maybe you're thinking of planning a virtual vacation. So it's really a portal or a way to teleport yourself to anywhere in the world.
Q. Have you brought an example to show the jury to help illustrate your testimony, Mr. Birch?
A. Yes, I have.

So here you can see this is a screen shot from Google Earth. And as you can see on the right-hand side is a picture of the globe out in space. And we have actually shown that we're drawing the country boarders as well. On the left-hand side there is a search box and some other features. This is showing the desktop version of Google Earth.
Q. How does Google Earth relate to Google's mission?
A. I talked about this idea of organizing the world's information. It turns out that a lot of information about the world
and the planet we live on. And a lot of that information has typically been satellite imagery, has only been accessible to scientist and researchers and people in the industry. But bringing in data into Google Earth we have made that available to millions of people around the world.
Q. What are some of the ways that Google Earth is used?
A. So Google Earth is used in a lot of different ways. In fact, I have a couple of example videos if we can bring those up.

So this, if you go ahead and click start. Here is an example of learning a little bit about history. So what we're going to do is we're going to fly in Philadelphia and here you can see the stadiums in Philadelphia.

But what we can do is go back in time so you can actually see the old stadiums. You can see the spectrum. And it's getting torn down and replaced. So now where the $76 e r s$ play.

And then over here on the left you can start to see the Eagle's stadium being built. Now, the new Phillies stadium is being
constructed. And then finally the upper
right-hand side you can see the old stadium being demolished. This is a really great way to learn something about your community.
Q. Did you bring another video to
illustrate how Google Earth can be used?
A. Yes, I did. This is something many of us may have experienced, flying to your house or flying somewhere that you're interested in. Again, we're flying into Philadelphia and in this case we're looking at a very significant building in American history which is Independence Hall. So we're going to fly down and you can see we have 3 D models of all the buildings, all the trees in the area and then right here in the center you can see Independence Hall. We do this nice cinematic fly around. It really gives you a sense of what this place is like and encourage you to come out and visit.
Q. Mr. Birch, how did you get involved with Google Earth?
A. So I started on Google Earth immediately while joining Google. And my
involvement with that was really based on my past experience working in things like computer graphics.
Q. What was your responsibilities as the sole product manager for Google Earth?
A. So I was responsible for all aspects of the product. So that included things like product strategy, coming up with feature definition, timelines, kind of managing schedules, working very closely with the engineers; also dealing with marketing, financials, projections, working with press. There is -- obviously this is a very well-known public product, so I did a lot of press interviews and other types of outreach activities working with the legal team and all the things that are related to running a product.
Q. Mr. Birch, you mentioned earlier you're now the PM Emeritus of Google Earth?
A. That's correct.
Q. What roles does that entail?
A. That's kind of a title I use to describe my role on the current Earth
development. There is a new team working on some future version of Earth and they're pretty new to the product. Most of the older team has moved on, but I have a lot of the history and the knowledge and experience with that product, and so I regularly advise that team. Of course, I sit just a few feet away from them and meet with them regularly to talk about some of the aspects of the product and history.
Q. Mr. Birch, why have you come to court to testify?
A. I'm here as Google's representative, so I'm here to be the face of the company, to talk about what Google is about, what Google Earth is about, and to help the jury and others here in the court to better understand Google.
Q. What did you do immediately before working at Google?
A. So immediately prior to Google I worked at Microsoft. And I was the graphics hardware lead for the xBox 360 gaming system. And that entailed basically managing all of the architecture and silicon development for the
graphics processing unit for the xBox 360 system.
Q. Before Microsoft where did you work?
A. Before Microsoft I worked at a company called Silicon Graphics, or SGI, which you may have heard of earlier this week, which is a company that built high performance 3D graphics visualization workstations.
Q. What did you do at SGI?
A. So at $S G I$ for the first seven
years or so, I worked as an architect for basically designing 3D graphics, workstations. So there is this mention of a graphics processing unit that's been mentioned earlier. I designed and built those.

And then in the later years I worked in software development in graphics, library software dealing with various graphs, scene graphs and tree structures for representing 3D graphics.
Q. Mr. Birch, have you received any educational degrees?
A. Yes, I have. I have a bachelors
of science in electronic engineering from Cal Poly State University and I have a masters of business administration from the University of California and Berkley.
Q. Are you the named inventor on any patents?
A. Yes, I am.
Q. How many patents?
A. Five.
Q. Do any of your patents relate to Google Earth?
A. Two of them do, yes.
Q. Generally speaking, what do those cover?
A. Those particular patents are related to basically hand gestures for controlling Google Earth on a phone or tablet device, how you might navigate and move the globe, or the ways we control the camera in that application.
Q. Mr. Birch, is Google Earth part of any product area at Google?
A. Yes, it's part of what we call the Geo product area.
Q. What does Geo refer to?
A. Geo is short for geographic. And it basically means all the mapping products that Google makes.
Q. What products are in the Geo product area?
A. So the most dominant and most important one is obviously Google Maps. We also have other products like StreetView which is kind of a sub-brand if you will of Google Maps. We have a division that we call Terrabella which specializes in satellite analytics which is more of an Enterprise focused product, and, of course, Google Earth.
Q. What is the difference between Google Earth and Google Maps?
A. So Google Maps, the way I like to describe it, Google Maps is a tool to help you find your way in the world. It's really focused on daily use and helping people answer questions, like how do I get to this courtroom and get directions, where is a good restaurant or is this store open today, very day-to-day utility functions. Google Earth is really
intended to be kind of a fun entertainment product for just browsing and exploring the world.
Q. How many people work in the Geo product area?
A. There is about 2000 people.
Q. Of those, how many work on Google Maps?
A. The vast majority of them work on Google Maps.
Q. How many of them work on Google Earth?
A. There is about fifteen people.
Q. Why does Google Maps have so many more people working on it than Earth?
A. Well, Google Maps is the flagship product for the division. Again, this is the product that everybody uses. Not everyone uses, but we intend for people to use on a daily basis. If possible it has far more traffic than a product like Google Earth. It's ten times the number of users. It's really the main product that we produce.
Q. When did Google first release

Google Earth?
A. It was released in I believe June of 2005 .
Q. Why did Google release Google

Earth?
A. Well, we released it because we wanted to make a product that we thought was, you know, exciting and interesting for users. And, you know, it has a really -- you know, the first time people have used Google Earth they get a feeling of wow. And we wanted to create that kind of excitement for our users.
Q. Did Google acquire any of the material for Google Earth from another company?
A. Absolutely. So we acquired a company called Keyhole in 2004 which I believe was mentioned earlier. And Keyhole was a company that developed a lot of the technology that became Google Earth.
Q. Since introducing Google Earth in 2005, has Google offered other Google Earth products?
A. Yes, we have. So the very first version was for Windows computers. We then
introduced a version for MacIntosh computers, or Lennox workstations, and then later mobile devices like the Apple iPhone, iPad and Android phones and tablets.
Q. What is Google Earth for Android $8 ?$
A. Google Earth for Android is the version of Google Earth for Android phone and tablets, Version 8 is the most recent version that we released.
Q. When did Google release Google

Earth for Android 8?
A. That was released in I believe 2013.
Q. Mr. Birch, we have had some testimony --
A. I'm sorry, that was 2014 .
Q. We have had some testimony about another Google product called Globe. Could you tell the jury what Globe is?
A. Sure. So Globe is an internal code name that we use for the Earth like features in Google Maps, what we call either view.
Q. When did Google integrate from Globe into Google Maps?
A. That was 2013.
Q. Mr. Birch, have you been involved in all of the different versions of the accused Google Earth products?
A. Yes, I have.
Q. We heard a little testimony earlier about a company called Audi. Has Google provided any of the Google Earth functionality to Audi?
A. Yes, we have.
Q. Is it different from the other Google Earth products?
A. Yes, it is. So the other Google products are standalone applications. The technology with Audi was a software component that could be used as part of an application. In this case Audi developed the application that would run on what's called the head unit, the components in the dash in the car, they would develop the application and they would use the software component that we provided to them.
Q. Mr. Birch, has Google Earth won
any awards or industry recognition?
A. Yes, we won many. We won a United Nation's Environmental Program Award. We won a MAC World Magazine Award. We also won a couple of Webbys.
Q. What are Webbys?
A. So Webbys are an industry award.

They're kind of like the academy awards, but for people in the web industry.
Q. Does Google have any patents related to Google Earth?
A. Yes, we do.
Q. About how many?
A. We have about fifty.
Q. What do they cover?
A. They cover a wide range of components of Google Earth, everything from how do we do the rendering, and the core implementation to user interface, to you know, many different aspects. For example, I mentioned a couple of ones that I did that were related to the user interface on mobile devices.
Q. I want to switch gears a little bit, Mr. Birch, and talk about how Google Earth
operates. What kinds of information does Google use to present images of Google Earth or in Google Earth?
A. Uh-huh. So we use a lot of different imaginary data that primarily comes from satellites and aerial acquisition, so planes.
Q. How large is the total amount of information that Google has collected for use in Google Earth?
A. So it's -- it's massive. It's in the order of petabytes. And just to put that in perspective, you might have heard of megabytes and then there's some discussion of gigabytes which is a thousand times that, and then there's terabytes, which is a thousand times that and petabyte is a thousand times that. So it's a really, really big number.
Q. How does Google organize all that information that's used to present images in Google Earth?
A. So what we do is we actually store that, we kind of divide that up into a bunch of images and then we store those images on our
servers.
Q. And how does Google know which or how does Google Earth know which images to find?
A. So we actually create an index or what we call a metadata tree. And that metadata tree serves as sort of like a table of contents, if you will, for where we can go and find all these different images.
Q. Why is it called a tree?
A. It's called a tree because it's a data structure type, so in computer engineering there's this notion of a tree. You've heard some of that earlier, so it's called a tree because it has a root and it has branches and then it has leaves, so it looks kind of like an upside down tree.
Q. What kind of information is stored in this metadata tree?
A. So the term meta means it's not about data, it's information about the data not the data itself. So we don't store the data or the images in the metadata tree, we store information, for example, where the image is located.
Q. Have you prepared a graphic to help explain the idea of the metadata tree to the jury?
A. Yes, I have. So this is an example of a tree and in this case it's what's called a binary tree, where at the top we have a node and then below that there are two children and each of those have two children as you continue down.
Q. What do the small circles in the tree represent?
A. So the small circles, as I
mentioned, are nodes. And in the case of the Google Earth metadata tree, as I mentioned those nodes include information about images, so for example, where those images are located in the world and their existence.
Q. Now, there are lines drawn between the different circles in this tree. How do you describe the relationship between the different circles?
A. Sure. So there's really a kind of a family relationship. You know, we've made some references to family trees before and in
computer engineering and in software engineering we use that analogy, so if you go to the next slide I can talk a little bit about that. This pink node is one of the nodes and then go ahead and go to the next slide. The purple nodes here are the children of that node. The one above it is the parent and you can image the light blue ones are the grandchildren, so we use that terminology to kind of reference the relationship.
Q. In Google Earth, what is the difference between the different levels in the metadata tree?
A. So the different levels represent different resolution imagery. So let's go back to our pink node for a second. So the node - the image referenced by the pink node is half of the resolution of the two nodes that are purple. And in addition, the area covered by the pink node is equal to the area of both of the purple nodes, so you can think of one purple node is half of the area and the other purple node is the other half. I mean, total area equals the area covered by the pink node.
Q. And how does the, in this example, how would the area of the light blue nodes at the bottom, the four light blue nodes at the bottom compare to the pink node?
A. So again, they would also represent the same area, but would represent quarters of that area instead of halves of that area.
Q. Which version of the accused Google Earth products use a metadata tree?
A. All of them.
Q. How do the -- how does the metadata tree used in the accused Google Earth products compare to the illustration of a tree that you've shown to the jury today?
A. So this is a binary tree. And I had really just done that for simplicity, but it's a lot easier to look at. The Google Earth products use quadtrees and octrees. So that would be four- and eight-noded children.
Q. And have you brought an example of an illustration of a quad tree?
A. Yeah, so if you go to the next slide. So this is a quadtree, so it's similar,
but you can see it very quickly gets very complicated because of the vast number of nodes, because each level you now get four more children and four more children after that. And you can image what an octree would look like. It would be impossible to see. That's the reason I'm kind of simplifying it with a binary tree.
Q. And how is an octree different from your illustration of a quadtree?
A. As I mentioned, oct means eight, so instead of four nodes there would be eight children for any given node.
Q. Mr. Birch, in this example it looks like you have four different levels of nodes?
A. That is correct.
Q. How many different levels are there in the metadata tree in the accused Google Earth products?
A. We have up to about 25 different levels.
Q. And in the accused Google Earth products, what does the top most node in the
metadata tree represent?
A. So the top node is the whole world.
Q. And what geographic area is covered by the nodes at the very bottom of the metadata tree in the accused Google Earth products?
A. So in the areas with the highest resolution imagery, the bottom nodes are quite small. There may be only, you know, five or 10 feet on a side. So they're actually, you know, quite small.
Q. In the accused Google Earth products, where is the metadata tree stored?
A. So the metadata tree is actually stored on our servers. And the reason is even though it's just a metadata tree and doesn't have much information stored in it, it's also incredibly large. You can image if you tried to extend eight nodes of this down 25 levels, it's quite a big index, so we store all of that on the server as well.
Q. If it's stored on the servers, how do devices that have the accused Google Earth
products use the metadata tree?
A. So devices will actually request the metadata tree in portions as needed. It will basically request the portions of that tree.
Q. Now, does the -- you mentioned earlier that the metadata tree just contains metadata?
A. That's correct.
Q. And that's separate from the images?
A. Yes, that's correct.
Q. Where are the images that are used by the Google Earth products stored?
A. So the images are stored on Google servers.
Q. And what are those servers?
A. Those servers, you know, so
servers are computers that Google uses to offer our services and there's a service that runs on them that we call Keyhole, which is, you know, named after the original company, and that service is the one that actually provides this data back to Earth clients.
Q. How does Google Earth use the metadata tree to request information from the servers?
A. So what we do is we do something called traverse or we basically kind of walk our way down the tree to, you know, we basically visit each of these nodes to find out is this relevant, right, and relevant is primarily driven by whether it's in the view or not. Right. So if we're here at, you know, the east coast, we're not going to want data from Asia, for example. So we use this tree to understand what of this vast amount of imagery is actually relevant for the current view.
Q. And what happens after traversing or walking through the metadata tree?
A. So what happens after that is we, we build a list of nodes that we're interested in. So in the process of this traversal we're making a list, almost like a shopping list. Right. We want to make something which in this case is a final image and we need the pieces to make that and so traversing this tree is kind of our way of building up the shopping list of
images that we will need.
Q. Have you brought an illustration to help explain this process to the jury?
A. Yes, I have.
Q. Let's turn to that, please.
A. Great. So what we have here on the left there is again an example of one of these metadata trees and again it's a binary tree for illustration, but in the actual application it's a quad or an octree. And then on the right we have an example of a user's computer and you can kind of see the screen there, and that's where we're going to be drawing or rendering this final picture. And then just a little bit of guidance here on the colors. As I go through this animation, blue will mean that we've traversed or, you know, looked at one of these metadata nodes. Yellow is that we've requested that node and then the orange is that we have stored and rendered it. And just to be clear, this is not the whole tree, this is a portion of the tree. In this case it's the portion of the tree that is in the view. So you can image that outside of this is
a very vast amount of data that isn't relevant, it would just be kind of confusing for this diagram.
Q. So in the Google Earth products, what is the first step?
A. Yeah, so let me start. I talked about this notion of traversing, so if you can go ahead and flip. You see this blue arrows and this is the process of traversing. We go, we follow this tree structure and we are visiting each of the nodes that are in the view and for each of those nodes, because they are in the view, we add them to this list. But again, you kind of think of it as a shopping list, okay? These are the nodes that may be relevant for us for this, at least the ones that are in this current view.
Q. Does the list contain only nodes that are in the field of view?
A. That's correct.
Q. And what happens after traversing the metadata tree?
A. Yeah. So I'm going to mention this before you start it. So keep your eye on
that list. So this list is in a particular order. And it's what we call traversal order. Just happens to be the order that we've gone through and visited them. It's not the order that we actually care about. Some of these nodes are more important than other nodes, so what we're going to do is we're going to shuffle them around and re-prioritize them. Get the next animation. Okay.
Q. Mr. Birch, why are some nodes more important than other nodes?
A. That's a great question. So the reality is that what we really want to do is we have a task to do here, right, which is we're trying to make an image for the users. And what we want to do is we want to get to that answer as quickly as possible. And what we want to do is, you know, there's this notion of what is the appropriate resolution, right, because this tree could potentially extend much further down, but we don't want all that data because it's not really relevant. There's an appropriate resolution for the given view, and so what we're going to want to do is we want to get those
nodes first. So in this illustration you'll see that the D level represent nodes that are at the resolution that we care about or the appropriate resolution for this particular view. And what we do is we put those at the front of the list, because those are most important and then we start to add in some of these other lower ones and kind of put them back towards the end of the list.
Q. And what happens after the list has been prioritized?
A. So then what we do, we finished this whole traversal process, so we're done with that. And we have our list. So now what we have to do is we have to start fetching some of this data or requesting this data. So go ahead and get the next animation. And what we're going to do is we do that by requesting over the network. And I should describe a little bit of how we do this.

So the traversing time here is
really, really fast, like less than a blink of an eye. It's in milliseconds. The retrieving of this data takes a long time. It might even
take several seconds. And in drawing of a frame, that's a really long time, right, because we have to go out and go onto the network and there's a network request and it has to go to the data center and all this stuff that happened and maybe you're on a slow cell network, so that can take a really long time relative to this other process. So what we do is we have a bunch of what we call workers, which are little computers tasks that can go off and fetch data. So it's kind of like if you have your shopping list and you have a bunch of friends or so and you give each of them one item and say hey, go get butter and go get me some milk and whatever else, right, and each one of those people or those workers now go off and go fetch this data. And there's only so many of those, but they can be done in parallel with everything else. So that's important thing to keep in mind. It takes a long time, so we're going to get that going. And now that happens, that just keeps going while we continue with other things. So in this illustration here we've gone in and we fetched, you know, we have I think it looks like
about nine different workers in this case. We've gone and fetched or requested those different nodes.
Q. I'm sorry. I'll let you finish.
A. Okay. Great. And so then the next thing that will happen is let's go ahead and hit the next animation. So you notice that B1 came back, right? Now, we didn't request B1 first. How could that have happened? And again, because these tasks are all done in parallel, we don't really have control of what order they might come back in. So B1 might not always come back first, but there's a question of traffic, right, how much network traffic is there, you know, some tasks may take longer than others. So there's not necessarily a lot of control about what order they may or may not come back in. So in this case B1 comes back and so we go ahead and take that and we draw that and it's a little hard to see in this animation, but the left-hand side of that screen is now a little bit sharper than on the right, because we've gotten some higher resolution data, but only for half of the screen.

So what's going to happen next, this is going to be a little confusing, so I'll walk through it ahead of time, is that now a bunch of of these other ones are going to start coming back. When they come back we can
actually start requesting more because those workers are now available like okay, here's your data, great, I have something else for you to go get. Get me this other piece of data. So go ahead and hit the next animation. And what you'll see is now we're requested some more nodes and more nodes are starting to come back and at the end now what we have is we've gotten all of these D level nodes have returned back, right? And if you look at the image on the right, that is now the final image, right, because that's the resolution that's appropriate for this particular view. So now we're done. And we actually have all of the data that we need in order to create that image.
Q. Mr. Birch, in the approach that's used by the accused Google Earth products, are all of the nodes traversed before the first images of the nodes are requested?
A. That's correct, so we actually do the complete traversal first, and then we start to do requests.
Q. And in the approach used by the Google Earth products, are all of the traversed nodes requested before drawing the final scene?
A. Are all the traversed nodes requested? No. In fact, as you can see in this example, we haven't requested all of the nodes on this list, we've only requested a portion of them.
Q. And Mr. Birch, in the approach that's used by the accused Google Earth products, are all of the traversed nodes fetched before drawing the final scene?
A. Again, not necessarily. And in fact, in this case, we haven't fetched all of the nodes. We've only actually fetched a portion of those nodes.
Q. Why does Google Earth not request the image for each node that is traversed?
A. So as I mentioned earlier, what we're really trying to do is what's important is getting the final image to the user as quickly
as possible, right? And we want it to feel fast. And so we don't want to mess around doing things that don't help us achieve that goal. And so to do that we're going to prioritize, you know, by re-prioritizing the nodes we get to that answer sooner.
Q. In the approach that's used by the accused Google Earth products, can some child nodes be requested before the parent node is requested?
A. Yes, they can.
Q. And in the approach used by the accused Google Earth products, can some child nodes be displayed before it's parent is requested?
A. Yes, absolutely. You can base -again, because of this process where we're potentially or we're fetching the child nodes ahead of other nodes, then they can potentially be displayed before they are fetched -- before the parent would be fetched.
Q. And in the approach used by the accused Google Earth products, are all of the requested nodes, do they have to be returned
before drawing the final scene?
A. No, they do not.
Q. So are all of the requested nodes drawn in the final scene?
A. No. They are not. And one of the ways to think about that is if we have all of the children nodes for the view, there's no reason to draw the parent, because the parent is blurrier, right? So we don't want to create a blurry image for people because that's not as nice as a sharp image. And if we've already gotten back these higher resolution children, then we're just going to go ahead and draw those and we don't even bother drawing the courser parent.
Q. Is the approach that you described used in all versions of the accused Google Earth products?
A. Yes, it is.
Q. And have all versions of Google Earth used this approach since it was released in 2005?
A. Yes, they have.

And actually, I would just like to
make one more point on this before we move to. I talk about this idea of the importance of getting to an image as quick as possible. You know, that's really important to us. And we actually have a metric we use, we call it scene resolution time. It's something that we measure and keep track of and monitor over time because we want to be fast, and we want to get an image as quickly as possible.

And there is many different ways that we might do this, but the reason we do it this way is because this notion of scene resolution time or getting to the final image as quickly as possible is so important to us.
Q. Mr. Birch, are there tradeoffs to using this approach?
A. There are. So the benefits you have are you can get to this final image sooner. One of the tradeoffs is that you are loading potentially high resolution data ahead of lower resolution data and there can be some discontinuities in the data, you can have some low resolution, for example we saw half of the screen sharp and the other half blurry. It's
visually pleasant to have the whole imaging from blurry to fine, but that's also slow. So we kind of made a choice how we implemented it, it's more important for us to get to the final image sooner rather than creating this kind of smooth blurry or coarse to fine transition across the whole image.
Q. Mr. Birch, I'm going to have to switch gears a little bit and talk about financial information related to Google Earth.
A. Okay.
Q. Are you familiar with the finances and financial records related to Google Earth?
A. Yes, I am.
Q. And how did you become familiar with those records?
A. Well, as product manager for Google Earth that was my responsibility. I was responsible for all the aspects of the Google Earth product family.
Q. What fees did Google charge in the past for Google Earth?
A. So in the past we have had a few different licensing fees for Google Earth. So
one would be we mentioned Google Earth Pro as one product. So that was one way we would, you know, charge for the product. We have another product called Google Earth Plus which was available for a short period of time which is much less expensive version and we also had Google Earth Enterprise which was part of a package of different products and services we sold.
Q. Does Google currently collect any revenue related to Google Earth?
A. Currently we don't. I think there may be some residual revenue from some older deals that we have done, but we aren't selling any of the products today.
Q. When you first joined Google, what was the plan for making money from Google Earth?
A. Well, I think when we first joined the plan was -- you know, it's kind of interesting, actually, because my first question to my boss, who is John Hanke who you saw on video testimony earlier, my first question when I joined was, you know, who owns the business model and the $P \& L$ in this product because I was
interested in understanding that. His answer was well, just go get users, really focus on getting users.

I think there was really a lot of drive towards making happy users and delighting them. We obviously had the Enterprise revenue plan and that was something that we already had some history with. And we also had some plans for doing advertising revenue in the product.
Q. Does Google currently include ads in any of the accused Google Earth products?
A. No, we do not.
Q. How successful was the effort to monetize Google Earth by using ads?
A. It was not successful.
Q. Was that related to the decision not to include ads?
A. Yeah, exactly. I mean, the amount of revenue that we got from putting ads in the product just really didn't justify the effort, and, you know, there is always issues around user experience. If you're going to show ads in the product, you want to make sure it didn't detract from the experience. The revenue didn't
justify doing that so they were just pulled out.
Q. Why wasn't Google successful in monetizing Earth through advertising?
A. Well, it's important to think about, you know, there is this idea that you get users and with a lot of users you can generate revenues through ads. That's what we did with Google Search. The problem is that Google Earth users are not the same as Google Search users. You may go to Google Search because you're interesting in buying a television. Maybe you're trying to plan a wedding. There are all sorts of thing that we learn about a user's intent and it's a really great place to show ads.

People in Google Earth you don't go to Google Earth to buy a new TV. You go there to kind of browse around the world and explore, even though we have a tremendous amount of usage, and these incredibly long session lengths, the number of minutes people spend on the product was just massive, but nobody clicks on ads in Earth because they're really not relevant. And the user doesn't have some intent
where they're looking for something, it's just a browse experience.
Q. Is one of the metrics that Google tracks session time?
A. Yes, it is.
Q. What does the session time reflect about users of Google Earth?
A. Yes. So the session time is how long does a particular session last. You know, if you start using Earth and use it for a minute or do you use it for five minutes or do you use it for an hour. And the numbers that we had, for example, the desktop products were close to twenty minutes, the mobile products were around seven minutes. It really shows a level of, you know, engagement with the product, because people would stay in the product for quite a long time.
Q. How does that relate to Google's ability to monetize Google Earth through ads?
A. As I mentioned earlier, you know, we had a lot of user time in this product. But the problem was it wasn't a situation where people really had an intent to do something or
to buy a product or do some other thing where an ad was really going to be an effective thing to show the users.
Q. During the time that Google Earth included ads, did Google keep track of how much it charged for those ads?
A. Yes, we did.
Q. What does the amount that Google was able to charge for ads in Google Earth reflect about Google Earth users?
A. Again, the amount of money we got from Google Earth users was very low relative to other products.

And one way to think of this is that anyone can go and create a web page and put Google ads on it, but not all web pages are created equal. If you have a web page about selling shoes, then maybe you're going to be able to sell ads related to shoes on that page. If you have one about your pet cat, probably not a great opportunity. So those have different monetization opportunities.

There is an notion called RPM
which is how much money per thousand
impressions. I think you heard that earlier. The RPM numbers in Earth were really low, and you know, probably twenty times or more less than on the property like Google.com.
Q. In what group is Google Earth now?
A. So Google Earth -- so what
happened was, you know, in addition to turning off advertising and stop selling the product, there really wasn't any active development on Google Earth. More recently we decided to move it into a group called Geo For Good, which is our philanthropic arm of Geo. There is a lot of good things that that group does and Earth meet the needs of having a positive impact on the world and now it's part of that organization.
Q. What does Geo For Good do?
A. Geo For Good is really an organization, as I mentioned, to help do good in the world. We have initiatives. Something called Global Fishing Watch, for example, which is a project we did in collaboration with some nonprofits to monitor fishing activity and to look for illegal fishing so that we could really start to address when there was illegal
depletion of fishing stocks because that's a big global problem that we all have.

There is an outreach team that works on working with nonprofits and other organizations. And then there is my current product which is Google Earth Engine which is a tool for scientists and researchers to monitor things like deforestation, drought, public health and other really big important issues.
Q. Historically how did Google obtain revenue from Google Earth?
A. Historically there were these two different methods. There was licensing revenue and advertising revenue.
Q. Let's take them one at a time.

How did Google keep track of its licensing revenue from Google Earth?
A. So licensing revenue was kept, recorded in a system called Hyperion, which is our finance system.
Q. Mr. Ang, could you please put up on the screen Defendant's Exhibit 1114. This is very, very tiny type on it, so we're going to try to below it up.

What is Defendant's Exhibit 1114?
A. So this is an output from this Hyperion system that I mentioned earlier.
Q. Let's talk, make sure we understand what some of these columns are. The first two have pretty recognizable name, year and month. The next two say D08 Earth on Premise and D08 Keyhole?
A. That's correct.
Q. What does D08 refer to?
A. This is just an internal code that the finance team uses to represent Earth licensing revenue.
Q. What is the difference between these two columns?
A. It's really just a renaming, for whatever reasons the finance team changed it from Keyhole to Earth on premise at some point, there is no overlap between them, it's just a renaming.
Q. The first row, 2005, month of 7 . That's July. Why does this start in July of 2007?
A. That's the first time that we
received or booked revenue for the Earth, you know, the first time we got Earth licensing revenue.
Q. If we could move over to the right on the document and look at the remaining columns, there is three of them there. They all start with the code D53, and they all have the same Earth Builder, Googling Maps Engine and 14B Maps Engine. What do those columns refer to?
A. All of those columns refer to a different product that we called Maps Engine.
Q. What is the code D53?
A. So, again, D53 is really just an internal finance team code that references this Maps Engine product.
Q. Do any of those columns relate to Google Earth?
A. No, they do not, they relate to this Maps Engine product.
Q. Mr. Birch, have you created a summary of Google's licensing revenue from Google Earth?
A. Yes, I have.
Q. Is this a copy, is this that
summary?
A. Yes, this is a summary.
Q. What is the total amount of licensing revenue that Google has received from licensing Google Earth from July of 2005 through the end of 2014?
A. So, the amount total is \$226, 167, 748.
Q. How did you create this summary?
A. This summary is basically just a spreadsheet of the data that we saw in the earlier exhibit. And I just summed up the total numbers from each year, and in the right-hand column and I totaled those at the bottom just so it's easier to understand.
Q. Let's talk about the second category of revenue that you mentioned, advertising. How did Google obtain revenue from advertising in Google Earth?
A. So what we did we would show different ads within the Earth product. For example, maybe if you did a search, or sometime there are photos that will show up in the view, you can click on that photo, you get a nice
photo of that location, we might show an ad alongside that photo.
Q. How did Google keep track of the revenue in Google Earth?
A. We kept track of that in system called AdsNav.
Q. Can you put up Exhibit 1011 . This is really, really tiny type. So maybe we can blow up the top left-hand corner.

What is this exhibit, Mr. Birch?
A. So, this is an output from this AdsNav system that I mentioned earlier.
Q. This begins in April or month four of 2007. Why does it begin at that time?
A. Because this is when we formally launched ads in the Google Earth products.
Q. And I know they're very small, so maybe we can go through them. You reviewed this exhibit before today, haven't you, Mr. Birch?
A. Yes, I have.
Q. What do the different columns represent?
A. So the different columns represent different type of ad placement, so for each
placement you give it a different code or name so you can track the performance of each.

So these different columns, you
see one here, Google Earth Panaramio. Panaramio are these users photos that I mentioned earlier. We have partner Google Earth Geo codes. A Geo code is if you search for a place, maybe a city name or a park name, that would be when we showed an ad with those kind of results. There is also some related to what we call local search or for showing business information.
Q. Is each of the columns in this exhibit, Defendant's 1011 related to advertising at Google Earth?
A. Yes.
Q. Are these all of the different categories of advertising in Google Earth?
A. Yes, these are all the Google Earth advertising.
Q. Mr. Birch, have you created a summary of the revenue that Google has received from ads in Google Earth?
A. Yes, I have.
Q. Is this that summary?
A. Yes, it is.
Q. How did you create this?
A. Unfortunately the right-hand side is getting a little cut off, but I'll help to describe this. Again, I took that same spreadsheet of the data or that output of the AdsNav and put it in a spreadsheet and those rows are added up for each year. At the very bottom, you can't quite see it, but the bottom number there is about $\$ 5.6$ million.
Q. Is that a little more than $\$ 5.6$ million the total amount of revenue that Google got from advertising in Google Earth from the beginning in April 2007 through the end of 2014?
A. Yes, it is. For the United States.
Q. Is this the total amount of advertising revenue that Google has gotten from Google Earth?
A. Yes.
Q. Now, we heard some testimony earlier about something called a prep cookie. Do you recall that?
A. I do.
Q. What is a prep cookie?
A. So, maybe I should start with what is a cookie. And unfortunately it's not one that you can eat. A browser, a web browser has a notion of putting a little file in your computer and that little file will persist so it's used to keep track of user activity over time. So if you return to a web page, you can learn something, keep information about a user.

The prep cookie is a cookie that Google uses to keep track of Google users so that we know when they return to a site or which Google properties they may visit.
Q. Can you bring up Plaintiff's Exhibit 40. Maybe you can blow up the top part, the title, so it's a little bit easier to see. This was used as an exhibit earlier in the trial, Mr. Birch.

What is this exhibit?
A. So this exhibit is a proposal from an engineer on the Earth team or related to the Earth team named Olivia Bailey. And what this is is a proposal for the use of, basically allowing Google Earth to write to this prep
cookie so that we would know about users of Google Earth in other products.
Q. Was this proposal ever implemented?
A. No, it was not.
Q. Mr. Birch, one last topic. Are you familiar with the concept of derived or imputed revenues?
A. Yes, I am.
Q. What does derived imputed revenues mean?
A. So an imputed revenue is basically revenue received for -- usually for your own services that you might have purchased outside elsewhere, but you're using internally. So it's really just an accounting term for sort of this additional revenue. In the context of the Geo organization it meant revenues that might come into Google, but not directly to the Geo organization.
Q. Has Google ever identify any categories of derived or imputed revenues associated with Google Earth?
A. Yes.
Q. Which ones?
A. There is one. And what this is, it's called a client referral fee. So it's basically if someone installs Google Earth on your desktop, you'll notice that you are basically downloading a program. At that time we offer another Google product called Google Chrome. And if the user chooses to install that, they might get both Google Earth and Google Chrome.

This referral fee is an imaginary payment from the Chrome team to pay for the installation of Chrome, because they're basically paying for more users and so this sort of additional payment is to the Geo group for doing that.
Q. Does Google receive, actually receive any revenue from this referral fee?
A. No, we do not.
Q. So how does it benefit the Geo group or Google?
A. So the way it benefits the Geo group is it's a way of showing value that the Geo group and the Geo products, specifically in
this case, Google Earth.
Q. Did Google ever identify any other categories of derived or imputed revenue connected to Google Earth?
A. No, with the exception of I mentioned Chrome, there was also a product called Toolbar where it was a simple idea where it would be an installation for a product. Those two products were the only imputed revenue related to Google Earth.

MR. SNYDER: Pass the witness. CROSS-EXAMINATION.

BY MS. ALFARO:
Q. Good morning, Mr. Birch.
A. Good afternoon.
Q. You went through some slide animations with your counsel this morning to explain how Google Earth works; is that correct?
A. That is correct.
Q. And you referred to them as metadata trees, I believe?
A. A metadata tree, that was part of the demonstration, yes.
Q. You never used these particular
animations to explain Google Earth to others at Google, have you?
A. No, I have not.
Q. You have never used them with

Google business partners?
A. No, I have not.
Q. Or with Google customers?
A. No, I have not.
Q. In fact, nobody at Google has ever used those particular animations for that purpose?
A. That's correct, these animations were made for this specific presentation.
Q. They were made for this trial, that's right?
A. That's correct.
Q. And these animations are not Google documents, are they?
A. I mean, I helped make them. I don't know why that wouldn't be considered a Google document.
Q. There are plenty of Google documents that were in this case that describe how Google Earth operates; is that right?
A. Yes.
Q. For instance, the source code?
A. That's correct.
Q. Mr. Birch, you joined Google in May of 2006; is that right?
A. That's correct.
Q. And you testified that Google Earth was released in 2005?
A. That's correct.
Q. Which is before you joined the company?
A. Yes.
Q. You would agree with me that the operation of Google Earth is described in the Google Earth source code; right?
A. The source code is the implementation. I wouldn't say it describes it. It's basically the embodiment of it.
Q. If someone wanted to know how Google Earth works, the source code would probably be a good place to look; is that right?
A. Obviously challenging, but it would be the authoritative source.
Q. You have been in the courtroom
throughout this whole trial as Google's corporate rep?
A. Yes, I was.
Q. You were here when Dr. Castleman testified?
A. Yes, I was.
Q. You heard Dr. Castleman yesterday discuss the source code for Google Earth; right?
A. Yes I did.
Q. And you didn't write any of the source code for Google Earth, did you?
A. No, I didn't. I've already
checked in a couple configure files, but I didn't write any of the source code.
Q. And Google did not designate you as an expert in this case, did they?
A. No.
Q. You didn't submit an expert
report?
A. No, I did not.
Q. And you're not an expert witness?
A. That is correct.
Q. Mr. Birch, Google tracks an activation metric for Google Earth, correct?
A. That is correct.
Q. And they track a daily upgrade metric?
A. Yes.
Q. And a daily session metric?
A. Yes.
Q. And tracks session length?
A. Yes.
Q. For Google Earth. And I believe you mentioned earlier in your testimony that the session length is incredibly long for most of these?
A. Yes, it's a long number relative to other products.
Q. Right. And you'd agree with me that Google is interested in how often Google Earth is used; is that right?
A. Yes, that's correct.
Q. And you'd also agree that Google is interested in how many people use Google Earth, right?
A. Yes.
Q. And Google uses all of these metrics that we've talked about as a measure of

Google Earth's success; is that right?
A. You could say that, yes, by people using our product, that is success to us.
Q. And as early as 2006, you already considered Google Earth to be a successful product; is that right?
A. That's correct.
Q. Mr. Birch, you'd agree with me that there is overall value in people liking Google as a company; is that right?
A. Yes.
Q. And that's the case even for products that don't have immediate revenue goals; is that right?
A. Yeah, every product wants to make products that delight users and make people think good about Google.

MS. ALFARO: No further questions.

BY MR. SNYDER:
Q. Mr. Birch, why aren't you the author of any of the Google Earth source code?
A. Well, I'm an engineer, but I'm also -- we have some of the brightest engineers in the industry and they are the people whose
job it is to really write the code.
Q. Are you familiar with the Google Earth source code?
A. Oh, absolutely.
Q. Is the illustration that you gave to the jury of how Google Earth works consistent with the source code for the products?
A. Absolutely.
Q. And why did you help prepare that presentation?
A. Well, I think all the stuff is pretty complicated. And I think my main goal is to really is how can I distill down the essence of how this product works in a way that is easy to understand. I mean obviously it's a simplification and there's a lot of other detail and I mean the source code for this product is probably hundreds, if not thousands of files and thousands, tens of thousands of lines of code. Right? It would be a huge volume to try to go through that. No one can go through all that, so my real goal is how to distill that down into something that's easy to understand.
Q. And is your illustration
consistent with the way that the Google Earth products actually operate?
A. Yes, it is.

MR. SNYDER: No more question.

MS. ALFARO: No more questions,

Your Honor.

THE COURT: Okay. Thank you. So now let's see if the jury has any questions, please.

THE COURT: The jury has two questions, so if counsel could approach the bench for me.
(Side bar discussion.)

THE COURT: One question is when did you or your team come up with the metadata tree system to show it the way you currently do? And the other question is what years did Mr. Birch work at SGI and in Microsoft. Any objection to that?

MR. SNYDER: No objections.

MR. PARTRIDGE: No objections,

Your Honor.

THE COURT: Okay.
(End side bar discussion.)

THE COURT: Mr. Birch, have a
little bit of unusual procedure here in that we let the jury ask questions and the jury has a couple of questions. The first is when did you or your team come up with the metadata tree system to show data the way you currently do?

THE WITNESS: Sure. So the idea of the metadata tree really existed even prior to the acquisition. So this is something that was part of the Keyhole EarthViewer was the name of it, product. In fact, the idea of a metadata tree to store information like this is a very old idea in programming and computer graphics, so that the idea existed from the very beginning of Google Earth and prior.

THE COURT: Okay. And two other questions. What years did you work at SGI?

THE WITNESS: So I was at SGI from 1989 to 1999, so also 10 years.

THE COURT: And when did you work
at Microsoft?

THE WITNESS: I was at Microsoft
from 2002 or 3 until 2006 .

THE COURT: Okay. Thank you. And

Mr. Birch is excused at that point. Is he subject to recall?

MR. HAWES: No, Your Honor, he's not.

THE COURT: No. Okay. Thank you, Mr. Birch.

MR. SNYDER: Your Honor,
Defendants move into evidence Defendant's exhibit 1114.

MS. ALFARO: No objection, Your Honor.

THE COURT: That's admitted.
MR. SNYDER: Your Honor, Defendant
Google calls as it's next witness, Mr. Michael Jones. He was the CTO and chief technologist for Google Earth at Google. He's going to testify about the history and development of Google Earth and he's also going to testify about his interactions with ACI. And his examination will be presented by Ms. Simmons. MICHAEL T. JONES, the deponent herein, having first been duly sworn on oath, was examined and testified as follows:

BY MS. SIMMONS:
Q. Good afternoon, Mr. Jones.
A. Good afternoon.
Q. Again, you know who I am and I think I've already introduced myself, but I'm Luann Simmons and I'm with the Google team. Mr. Jones, what do you currently do for a living?
A. I'm the Chief Executive Officer of Wearality Corporation.
Q. What does Wearality Corporation do?
A. It's a spinoff from Lockheed Martin, we make the world's most advanced lenses for virtual reality and augmented reality.
Q. What would lenses like that be used for?
A. They're used to make headsets that sort of cleverly fill your entire vision with computer-generated pictures, so that wherever you look, everything you can see is real. It helps people understand to do surgeries and flight simulation and games, but also to understand the world around them.
Q. How long have you been with

Wearality?
A. A little over a year, about a year and a month.
Q. Where did you work before

Wearality?
A. I worked at Google.
Q. What did you do at Google?
A. I was the Chief Technology

Advocate of Google.
Q. What does that mean?
A. Well, I worked for Eric Schmidt.

I was basically the technical ambassador of

Google. I was the person that went around the world to explain to heads of state or legislators how Google worked, how technologies at Google worked and worked with them to find ways to solve problems.
Q. What other roles did you have at Google during your time there?
A. Well, I was the Chief Technologist or CTO basically of the Google Earth Maps and Local Search efforts.
Q. When did you first join Google?
A. 2004 .
Q. Under what circumstances?
A. A merger, an acquisition.
Q. Acquisition of what?
A. Oh, a company called Keyhole.
Q. What was Keyhole?
A. Keyhole was a service company, it provided both software and services to let people fly around the earth and explore it fluidly.
Q. Did Keyhole make any products?
A. Yes. We had several products. One was called the Keyhole EarthViewer. It's a program you run on a PC. And we had a Keyhole server, which was the server that sent the pictures to the EarthViewer. And there was a third product called Keyhole Fusion that essentially kind of processed the picture so the server could distribute them to the clients.
Q. So the EarthViewer was the client product. What happened to Keyhole's EarthViewer after the acquisition?
A. Oh, it was refined a little bit and then shipped as Google Earth.
Q. And we're going to talk more about

Keyhole and Google Earth. But first, Mr. Jones are you being compensated by Google or anyone associated with Google for your testimony here today?
A. No.
Q. And since you left Google last year in 2015. Have you worked for Google as a consultant or a contractor or otherwise received any salary from Google?
A. No.
Q. Do you currently own any stock in Google?
A. No.
Q. So why are you here testifying today?
A. Well, this is a -- basically I feel like Google Earth is my baby and I want to make sure the truth about everything about this case comes out.
Q. What do you mean by that?
A. Well, I've been in this field for 35 years and I don't like the idea of redefining the start of it as 10 or 15 years ago. That concerns me greatly.
Q. Let's talk about your background a little bit more. How long have you been working -- 35 years, is that right? How long have you been working with earth visualization?
A. I started in 1981 with a company called Geo Based Systems building software to render the earth and buildings on it so people could make movies and explore things, see construction projects before they were finished and present that to planning commissions and board of directors and things, so that was 1981.
Q. And you said that was Geo-based Systems?
A. Geo-based Systems, yes.
Q. What did you do after working with Geo-based Systems?
A. Well, I went to a company called Star Technologies, Graphicon, it's a division of -- a spinoff from General Electric. It was a flight simulation company.
Q. Does flight simulation have anything to do with earth visualization?
A. Certainly does. That's why they hired me.
Q. How so?
A. Well, when you -- if you learn to fly an airplane, part of it is taking off and part of it is landing, but the bulk of the time is between one airport and the next airport flying over the earth, so you look out the window of the simulator and you see rivers and streams and mountains and things, so that's -being able to constantly stream that to pilots so it looks real is a fundamental requirement of flight simulation.
Q. What did you do after your work with Star Technologies?
A. Well, I was recruited by a company called Silicon Graphics to come help them build flight simulators that are their hardware.
Q. And Silicon Graphics is sometimes also referred to, I thing we've heard testimony about it as SGI; is that right?
A. That's right, SGI.
Q. And so what did you specifically do at SGI?
A. Well, I was an engineer on a product called Performer that was basically take
the standard workstation and make it a flight simulator. Then I became the manager of that team, then I became the engineering director of all the advanced graphic software at SGI, everything else that was advanced graphic software.
Q. Are you the named inventor on any patents related to your work at SGI?
A. Yes, approximately 11 patents.
Q. Any of those stand out?
A. Well, there's one that's called ClipMapping that I think is relevant to this and I'm most proud of.
Q. Tell us about ClipMapping. What is that?
A. Well, ClipMapping was a real breakthrough in the way that computers could represent imagery for flying over the earth so that it was exactly perfect when you looked at it in a simulator, every pixel was just perfect. And before that it was very hard. ClipMapping made it perfect. So that was a lot of work. And it pretty much transformed the whole industry of terrain visualization and flight
simulation and all kinds of military simulations as well as allied industries of mission rehearsal, mission training, sort of government type work, military work.
Q. When did you come up with the idea for ClipMapping?
A. Late 1993, early 1994. Took a
long time. It was a hardware, so it took a long time to get it perfected.
Q. When you were at SGI, were you aware of any other systems that existed so this is in the time frame of the 1990's, any other systems that existed for earth visualization?
A. Certainly. It was my job to know.
Q. What do you mean by that?
A. Well, as an engineering manager and director, I was responsible not just internally for making the products, but working with customers to understand what didn't work or maybe what should work better, what their goals were and our customers, we had tens of thousands of customers, but maybe the thousand I was concerned about were the ones that built flight simulators and systems for looking at the earth.

So the marines used it, Boeing used it, the Coast Guard, the Navy, all these people as well as, you know, non military applications, but I worked with them to help solve those problems. So I knew about companies like, well, like Hughes Training, Boeing, Cambridge Research I knew really, really intimately. Just many, many companies.
Q. What about research projects during this time frame. Were you aware of any research projects in the 1990's relating to earth visualization?
A. Oh, yes, there were academic projects as well. And our company was the center of computer graphics related, so everybody used our products, so I knew about a project at the Stanford Research Institute called TerraVision.
Q. And Stanford Research Institute, is that sometimes referred to as SRI?
A. Yes.
Q. What did you know about SRI's research project?
A. Well, they had a system that --
well, they had a big program called Magic that was going to show ways to use high speed networking, but they had a product called TerraVision that was a way of -- basically they had this idea of not using like a normal URL or web addresses for computers to say like ford.com and they wanted instead to have latitude and longitude markers, so that different companies or countries or NGO's could publish little tiles, little squares of imagery and have people fly through all of that. And so it would be a geographic world, basically a geographic web that people could fly through. And that system was prototyped at a trade show that I went to, 15,000 person show called SIGGRAPH.
Q. When was that?
A. That was 1995.
Q. Did the SRI system, to your
knowledge, where did that store the image data for visualizing this earth image?
A. Oh, it stored on it remote servers that cities and governments would publish.
Q. Were you aware of other earth visualization systems in this time frame, the
'90s that stored image data on remote servers?
A. Certainly. Almost all of the
military ones did. It's just -- flight simulation, usually we build a simulator and the data would be on disk drives in the computer, but for military mission applications at sea like that aircraft carrier pilot training, what they call mission rehearsal like we're going to fly from the carrier, we're going to go to this place, Kosovo, going to do this interdiction, the data came from the National Geo Spacial Agency through it's called national technical means, satellites and airplanes. And they would put that together at the NGA, the National Geo Spacial Agency in D.C., but they have to get that to the aircraft carrier, so they used networking to get the data there and they flew around data that was basically produced at the NGA.
Q. What about increasing the resolution of the displayed image so that you could get to finer and finer details, how was that handled, to your knowledge, by systems in the 1990's?
A. I think it was handled in the '90s the way it was handled in the '80s, '70s, ever since. Basically you have an area of regard, like a big wall, a ceiling, you dice it in little squares and then the squares have subsquares and little tiny squares there inside the big squares and basically what happens is as you moved around, the next big squares are broad and then closer, the next little squares are broad. This happens on a computer so it can happen more finely then divided it in powers of two instead of powers of a hundred. That's called a quadtree and data stream as you fly around.
Q. What about the user's experience during this time frame. How did users experience this image data that was provided by these earth visualization systems in that time?
A. Well, it was just like you would experience flying an airplane. You fly to the mountain and got sharper and sharper the closer you got to it. You look down 20,000 feet, you see the sea you're going to land the airplane in. The closer you got to it, you zoomed in and
finally you could see the runway and the stripes and runway edge illumination system, reels, everything that would be, you know, on a runway or in an aircraft carrier. You'd see the meatball, which is the optical landing system. So it was just -- it's axiomatic, the flight simulation is just smoothly zooming in to see the world.
Q. When did you leave SGI?
A. 1999.
Q. What did you do after leaving SGI?
A. Well, I ambitiously started a little company.
Q. What was that company?
A. It ended up being called Intrinsic Graphics.
Q. What did you work on at Intrinsic Graphics?
A. Our vision was to build software for game, for Game Cube, xBox and PlayStation II, but -- which we did, but we needed to get a demo to get funding. We got a contract with a company called Cambridge Research that I worked with at SGI. And they wanted us to build a
personal computer version of some software that did what their big computer software could do. And we thought since we had built all this software at $S G I$ we would be the perfect people to figure that out.
Q. Did you create a demonstration?
A. We did.
Q. What was that called?
A. It was called Earth after the Earth application in Neil Stephenson's science fiction novel.
Q. Can you describe for the jury what your Earth demonstration did?
A. It kind of took over the screen like a video game and let you use a joystick or a mouse or whatever to fly an airplane. You pull back, zoom up, you could look around, but you could inspect the data. It wasn't just flying, you could kind of stop like a UFO and you could look down because an airplane would crash. A UFO you could stop, zoom in, zoom out, move down, you could look around.

It didn't have any advanced
measuring tools, but it showed the complete
smooth imagery on a $P C$ as opposed to a big workstation because we used kind of a special PC to do that.
Q. You mentioned that you had some colleagues working with you. Where did you and your colleagues work on this demonstration?
A. That was, three friends of mine and I, we built that in the dining room of my house.
Q. Why were you in the dining room of your house?
A. Because my garage was filled with boxes, so we couldn't really do the garage type startup because my garage was too messy. But we built that in my house.
Q. And why personally were you
interested in working on this Earth demonstration?
A. Well, for me, I have been doing this since 1981. Right? But it started when I was a little boy. I was adopted and I didn't know where I was from. And I got a present one time for Christmas. It was a globe. And I looked at that globe every night forever. And I
imaged maybe I was from here, maybe I was from there. I studied the rivers, the borders, country names, and I dreamed when I grew up, I would be able -- I would go to those places when I was big. I could go to those places and I could see them.

And it turns out I grew up, I
couldn't fly around. It was a child's dream, but I was a computer programmer, I can write a program to fly around. That's always been a fascination.
Q. How long did it take you and your colleagues to create the Earth demonstration program?
A. About three months.
Q. What computer did you use?
A. We used an Intergraph machine. It was the only one -- in those days it was rare for computers, personal computers to have multiple like Intel processors inside them, so they usually had one, but we needed multiple PC's because we needed to write a parallel program.
Q. Did you need multiple PCs?
A. No. It's a single PC, but inside there is two computers. In my laptop now I have got four computers, back then you had to get two chips. Intergraph made machines that could do that. And we did that because we needed to do the data management and disc reading and the texture image fetching and all that in parallel with the drawing because we did it for flight simulation, you had to have one processor dedicated to drawing while other processors could do data fetching and things like that.
Q. Is that how your Earth
demonstration program worked, it did two different things at the same time?
A. It did. Cambridge was very satisfied and so was the navy and so was the three star general who approved it, it's how we got paid.
Q. How did the Earth demonstration program relate back to your work at SGI?
A. It was a natural continuation. At SGI we built hardware and software. Here we were just building software. We couldn't do it the same way we did it at SGI. But we learned a
lot and we learned how to, like what the problems were so we really could focus on how to build that. So it was a continuation of that years at SGI.
Q. How did your Earth demonstration program organize the image data?
A. It used a data structure, a computer system called Quadtree. I kind of referred before taking a big thing dicing it into pieces, parent, four children and each of those has four children and four children and four children.
Q. What did you do after developing the Earth demonstration program?
A. Well, we started -- we took the demo once we got paid by Cambridge, technically by the navy, we used our money to give us three or four months run way. We started going to Silicon Valley venture capitalists starting with the demo and saying look how smart we are, we wrote this demo, you should give us money to write this. It didn't really make sense because it was a different thing. We found a CV who funded us and we built a company.
Q. When you say funded us, who is us?
A. Well the four, the four guys.
Q. And what was the company that you built with that funding?
A. It was called Intrinsic Graphix.
Q. What happened after you got the funding and founded Intrinsic Graphics?
A. I had a little problem with that. What happened was I had the money and I started hiring people. I started hiring people to run the company. I was CEO and we were building all the software team we needed to build Intrinsic Graphics software to work with Sony and Microsoft and Nintendo. But the demo we built to get funding from Cambridge, I kept working on that.

At one point I had four or five people working for me working on that demo. And basically we had a pretty angry board meeting one time where the board of directors, which was new to me, have a board of directors, look you're like a maniac. You have this little company, only so much money, so much time and you have all these people working on this demo
that has nothing to do with your company. Like what is wrong with you? And they said you have to shut that down.

And I basically, you know, I love it, you know. And they said look, you have to stop. And so I said well, what if I spin it out? What if I take that, send it outside the company, hire somebody to run it, and send it away. They said okay. As long as you're not part of it, that's fine, we don't want anything to do with it, just get it out of the company. I said okay. So that's what I did.
Q. So you spin out a new company?
A. Yes.
Q. What was that company called?
A. It's called Keyhole.
Q. What happened with the Earth demo?
A. That was -- that went with Keyhole and all the technology went the Keyhole.
Q. Where are we up to now in the timeline, when did you found Keyhole?
A. 2001 .
Q. Why was it called Keyhole?
A. I was younger then, we were kind
of playful kids. And the -- since 1970's, you know, the government has had a top secret programs to do satellite recon over the former Soviet Union, and those programs all fell under the code word Keyhole. So we knew that, because it had passed -- the people that were part of that program couldn't say that word in public so it seemed fun to us if we built spy technology for regular people, instead of seeing where the bombers are, you can see is the hotel really got a beach view or not. It would be like a people's keyhole, so we called it Keyhole.

It was pretty fun watching Colin Powell and other people squirm when they couldn't say the name of our company. It was good to give them a business card and watch them vibrate.
Q. What was your purpose in creating Keyhole?
A. Just the same as building that demo, just to find a way to get information moving it forward, put it in the hands of other people. It's great that it trains pilots, it's great that it's been used to train astronauts of

NASA.
But really seven billion people
and as far as I'm concerned, the only thing people have in common is they live on the same planet. It doesn't matter where you're from, your culture, we're all brothers and sisters in that we live on the earth. It's our home.

I thought if we could see that, people would understand, like those people over there in this country we're going to bomb, they have kids, too, and their kids play soccer like our kids play soccer. There is a brotherhood of man that maybe I could help the world if people can embrace that and see for themselves. People that travel have a broader world view. I thought virtual travel people could be a little kinder and nicer and really embrace each other.
Q. You testified earlier that Keyhole offered a product called Earth Viewer; right?
A. That's true, yes.
Q. Was there a relationship between Earth Viewer and Earth demo that you created a little bit before?
A. It was just logical continuation.

It had more user interface features, more buttons to push and things, but it was the same technology.
Q. When did you first or when did Keyhole first launch Earth Viewer?
A. That same year that was created 2001. I made sure they were -- I didn't spin until I hired a CEO that I really, really, really trusted until the product was ready to go. When I spun them out they were ready to go to market, but I ran out of money.
Q. How many Keyhole Earth Viewer users did you have let's say at around the time of the acquisition by Google in 2004?
A. About 50,000.
Q. Where were those users located?
A. They were all over the world. Everybody is interested in seeing the earth.
Q. Where did Keyhole store the image data that was used by those users?
A. We had the Keyhole server product and we had that in Pala Alto, we had a server in Pala Alto in the basement of a building near the expressway, that's where all the data was
stored.
Q. Tell us about Keyhole customers for Earth Viewer, who were your customers?
A. Well, mostly they were commercial real estate people, so a big one was people that looked for places to build Wal-Marts. People at Wal-Mart they make a decision, big bosses there, somewhere there and somebody is going to build a Wal-Mart in Idaho, they look for good places next to roads, the right kind of people and population. They used to take pictures and send boards back and now they can make markers on the earth and people in Wal-Mart can fly around and see where the choices were. Quality Homes was a big customer. CBRE, Coldwell Banker, Richard Ellis, they lease office space they would use to that to take clients on virtual tours.

We had military customers, the marine expedition units used it all the time. Before we run up the shore and get shot at, what's it looked like. We also had customers in academia, intelligence community agency was a customer, but the National Geospacial Agency. But we had customers that were in the broadcast
industry.
Q. How did customers in the broadcast industry use Earth Viewer?
A. Well, they were like the poster child for what we were doing. CNN used it, and they used it when they go to do the news. They would show like they say now we are going to fly into Tahrir Square. They would fly into Tahrir Square. If you're not from Egypt you don't know that it's right on the edge of the banks of the Nile in Cairo. You wouldn't know that. It's just a name. They would take you to places, Central Park, wherever the place would be.
Q. Mr. Jones, do you have a video that illustrates how CNN used Keyhole Earth Viewer?
A. I do.

MS. SIMMONS: This is Defendant's Exhibit 1095 and, Your Honor, there are no objections pending to this exhibit. May we publish it to the jury?

THE COURT: Yes.
MS. SIMMONS: We're going to put
the video up. Let's not start it yet.

BY MS. SIMMONS:
Q. Mr. Jones, we're going mute the volume so that you can describe for the jury what they're seeing as this video plays.
A. Okay. So somebody is going to tell you about the palaces in Iraq on CNN. And most of us aren't from Iraq, so we don't know. We see Iraq up high, and the palaces are in Baghdad. So they're flying to Bagdad so you can know where Bagdad is. And then they say here are the palaces right on the base of the river. They go from palace to palace talking through here is the palace, here is the dome, here is the garden, here is the pools.

In this particular case I think there was a military action and they were showing the places where command and control centers were bombed and where there were targeted strikes. They were just discussing what does it mean to understand where these palaces are.
Q. I'm going to ask Mr. Ang if you could stop it right before it ends. Maybe this is a good point we could stop it right here.

There is text up in that upper
right-hand corner and it's kind of impossible to see from here. Do you know what that text said?
A. I do.
Q. What does that say?
A. It says Earth Viewer.com.
Q. Why does it say that?
A. Well, that was the name of our website, and it was part of the license we had with CNN that they could use our product but they had to put our website address up there. We were a small company, we wanted to make sure we got credit from the world for what we were doing so people could contact us if they wanted to do business with us.
Q. How long were you with Keyhole?
A. Well, I just joined -- I sold the parent company and I joined Keyhole maybe for six months, nine months, something like that.
Q. You were with Keyhole at the time of the acquisition by Google in 2004?
A. Yes.
Q. What was your role with Keyhole at that time?
A. I was the CTO.
Q. Were you involved in the Google acquisition?
A. Yes.
Q. How did that acquisition arise?
A. Well, we were just closing what we called series B financing. So this was series A, which is the first funding and series B is the second funding. If you're good you don't need series C, it's how much runway you need to takeoff. We haven't signed the papers yet. We were a week away.

We got a call from a friend of ours named Jeff Huber who works at Google who said that later, the founders of Google are customers of yours. We didn't know it, they fly around all the time. In fact, they cause problems at board meetings because they show it all the time asking people what their addresses are.

Apparently they were told if you like it that much, you should buy it, this person was calling us, Jeff was calling us to say could you come over and meet with us. We
want to talk about buying your company. It was kind of bad timing because we were right in the last week of signing, all the paperwork was done, all the legal expenses was done.
Q. Why did you decide to sell your company to Google?
A. Several reasons. I mean Google was -- but for me, personally I was on the board and I had -- I had told them, you can't buy it, actually, unless you make some promises. And the promise I cared about was we're going to need a lot of money to buy the data to make this be something for the world. It seemed to me like that was the way to fulfill my dream from child.
Q. Did you think you could fulfill that dream with Google?
A. Yes, I did.
Q. Did you become a Google employee as part of the acquisition?
A. I did, every single Keyhole employee became a Google employee. That was the other condition, you can't buy the company unless you take all the people. We built it,
you want it, take us, take the whole family.
Q. What happened with the Keyhole Earth Viewer after Google acquired Keyhole?
A. We worked on it a little bit. It was going to be at Google, and they had some looking field style guidelines, we did some user interface changes and a couple of substantive changes and we launched that as a product called Google Earth.
Q. Do you remember about when that was that Google Earth launched?
A. That was 2005 .
Q. When you joined Google in 2004, did Google already have a search product?
A. Yes. In fact, it was known for its search product.
Q. How did Google Earth fit in with Google's other products such as its search product?
A. Well, it didn't really fit in. I mean, it fit in the company mission to organize the world's information and make it universally successful and useful, but it was the only thing at Google that wasn't a web application. It was
a standalone. You had to download something to install it. That was a problem.

Like sometimes you had a computer like in a school, you can't install software, it's managed by somebody. Google was concerned about buying us. It wasn't a web software. But we ran understood Google for a year-and-a-half independently and we made it work and people were willing to download an application. It was separate, but at least it was philosophically friendly to Google.
Q. After you started with Google, did you hear from a company called Art+Com at some point?
A. I did.
Q. When was that?
A. 2006 .
Q. And was that the first time that you had heard from Art+Com?
A. No, actually I had heard from them once before.
Q. When was that?
A. When I was at Silicon Graphics, that was 1995.
Q. What did you hear about or from Art+Com back in your Silicon Graphics days?
A. They were customers of ours. Like I said, we were the center of graphics hardware at that time, there wasn't video and ATI, it was just us. And they wrote to us and said they were customers, they used the product that my team built, it was called Iris Performer. They had a demo they were going to be in California showing it off and they wanted to come to corporate headquarters and show it to their customers and show it to us and would the performer team come over and look at it.
Q. Where was this demo? This was at the corporate headquarters, is that what you said?
A. Our campus in Mountain View, but it was actually in a particular place called the corporate briefing center.
Q. What was the corporate briefing center?
A. It was sort of like the test drive facility, it was like the trial facility, it had a big room, maybe twice the size of the
courtroom, and it had computers on the walls and little pods out in the middle, kind of like this, actually with tables here and there, computers there. It was pretty big computers. It wasn't like modern computers. And little refrigerators everywhere. And they were going to show their software, or computer there.
Q. Who could attend demonstrations in SGI's corporate briefing center?
A. Pretty much anybody. We had celebrities. We had President Clinton, Vice-president Gore. We had Michael Jackson, all kinds of people came there. It was anybody. We had two or 300 people sometimes at one time in the corporate center. It was kind of crowded. School kids came sometimes in buses. It was a public venue.
Q. Did you attend Art+Com's demonstration at SGI?
A. We did. We went in the afternoon. I got the whole team together. They were kind of finishing things. I got them all together and we marched across the parking lot.
Q. Why?
A. Well, we wanted to see what they had done. They were our customers and they were proud to show us their work. And it's always exciting -- if you haven't worked in a factory, you wouldn't know this, but you work in a factory, you make things. But when you meet customers, they use things. It's like you work at a music factory, you make trumpets. Someone comes and wants to play the trumpet for you, you want to hear it because you're like I might have hammered on that trumpet and hear good music, so we were excited to see what they had done.
Q. What was your involvement in settling up the Art+Com demonstration?
A. None. The corporate business center machines were controlled by the briefing center staff. There was a man I knew there named Pat Lank. He was responsible for all the machines and installations and setup and tear down, cleaning. It was his thing.
Q. What did you see when you went to see Art+Com demonstration?
A. Well, it was -- we came in the
door, so imagine walking the length of the
courtroom and this was at the far end in a
little cul-de-sac area. And from across the room, I could see the ball, which in fact, it looked just like that, maybe that's it, like this, there is the ball. And I want to go touch it now, actually, to be honest. It was fantastic then and it is fantastic now. There was a big ball and a computer screen set up. And the idea was if you move the ball, the picture would move. The picture was like a globe. It was Universal Studios, a picture up on the screen, but you could move the ball and there was a cable between the computer and the ball so you made the picture move. And I thought that was really clever.

It turns out that that's the business they're in. They make like trade show exhibits for worlds fairs and companies so they're really good with mechanical devices. I told them, that is fantastic.
Q. What documentation did you receive at the demonstration about Art+Com demo?
A. Nothing.
Q. What about source code, did you see any of the source code that related to the software?
A. No. It was just a demo, it was just watching it go.
Q. What did you think about the demonstration?
A. Well, I liked the ball. And I like the ball a lot, actually. But as far as the actual computer part, I was not particularly impressed with that part.
Q. Did you have any follow-up communications with Art+Com after the demo at SGI?
A. Not much. I mean, maybe like - probably, you know, I like customers, I would have said it's nice to see your demo. I really like the ball and thanks for coming. Good luck.

Actually they wrote to me, they wrote to me and they asked me, could we -- we were about to do a new version of our software Performer, and they said could we be on the beta program for the new version of Performer. I said sure.
Q. Anything else about their Earth Visualization software, did you have any more communications or any communications with Art+Com about that?
A. No.
Q. What about then after SGI, you went to Intrinsic Graphics. While you were at Intrinsic Graphics, did you have any communications with Art+Com?
A. No.
Q. I think Keyhole was next. Did you have any communications with Art+Com while you were at Keyhole?
A. No.
Q. You weren't ever contacted by Art+Com during the time you were at Keyhole?
A. No.
Q. You were associated with Keyhole during its existence; correct?
A. I was on the board of directors the entire time. Even when I wasn't employed there, I went there every day and talked to the employees. I recommended employees that got hired. I was part of the management team.
Q. So you didn't have communications with Art+Com again until we're fast forwarding to Google, so it wasn't until your time at Google that you heard from Art+Com; right?
A. That's right, I remember those people from way back when.
Q. And you may have already said this, but when was that when you heard from them while you were at Google?
A. 2006 .
Q. What happened with respect to Art+Com in 2006?
A. I received an e-mail.
Q. An e-mail from whom, do you remember?
A. Pavel Mayer.
Q. What did Mr. Mayer say?
A. He wrote to me, congratulated me on Google Earth and says looks like you're making a good success there. People are enjoying that here in Germany, too. He said you may not know this, but we have a patent in that space, we're not using it, probably not going to use it, but maybe Google would like to buy it.
Q. Did he attach the patent to his e-mail?
A. He did. He attached the full patent specification to the e-mail.
Q. Before you got that e-mail from Mr. Mayer in 2006, were you aware of Art+Com having a patent?
A. No.
Q. Were aware of anyone at Google who knew that Art+Com had a patent?
A. No. I can't imagine, no, certainly not.
Q. Did you take a look at the patent?
A. I did.
Q. And what did you think about it?
A. Well, my job as a technical
engineer on the Geo team is to do that exact thing, to look at technologies that come across the thresholds and see if they make sense for us.

I studied it. I'm not a patent examiner or patent court. I just looked at it as an engineer, but with a lot of experience. And I figured out what is that patent trying to
tell me to do. How would that system work. And I felt it would be sufficiently inferior to what we already did that I couldn't imagine downgrading Google Earth to that.

But we also had a -- the patent team at Google had a program where they sometimes would buy or license patents that help in a protective way in case of future actions. What I told -- by e-mail, I didn't tell, I wrote an e-mail telling Mr. Mayer, I'm not interested in this for us. Maybe it's good for the patent team. I'll ask if they're interested in this. I'll forward it to them.
Q. If we could pull up, Mr. Ang, Plaintiff's Exhibit 329. This exhibit has already been admitted. Before we blow it up, I want to make sure we put this in context.

Mr. Jones, can you see Exhibit
329?
A. It's here on my screen. I couldn't see that one up there, but I can see this one.
Q. Do you know what that is?
A. It's an e-mail from me to Pavel.
Q. Mr. Ang, maybe we could blow up the top e-mail, the one from Mr. Jones to Mr. Mayer.

THE COURT: Are we going to be
coming to a convenient time for a lunch break?

MS. SIMMONS: Any time is convenient, Your Honor.

THE COURT: Why don't you finish what you're doing.

BY MS. SIMMONS:
Q. Mr. Jones, what were you
explaining to Mr. Mayer in this E-mail from Eebruary of 2006?
A. He wrote to me and he said well really, you can't understand what we're doing unless you come to Berlin to our office and see what we've done because we have kind of a museum of previously built things or a showroom I guess like or Silicon Graphics showroom would have been, can you come and see that, please, please come and see that. I said I'm busy. Berlin is not here, I'm here, I'm in California. I said I'll come. I wrote him, I said I will come, I will come see and I'm looking forward to that.
Q. And did you go to Berlin to visit with Art+Com?
A. I did.
Q. Maybe this would be a good spot, I'm going to ask him a bit about those communications. Do you want to stop before that?

THE COURT: It's up to you.
MS. SIMMONS: I don't want to cut into lunch time.

THE COURT: Why won't we take our lunch break now and we'll come back at 2 o'clock. The jury, remember not to discuss the case.
(Jury exits.)
THE COURT: Is there anything we need to do before lunch?

MR. PARTRIDGE: Your Honor, we do have some objections to a deposition transcript that Google wants to play this afternoon. There could be two ways to do this. I could give you a markup that I identifies the objections and then we could look at it as soon as we come back from lunch or we can talk about it first.

THE COURT: Why don't you give me a markup and I'll look at it during lunch.

MR. PARTRIDGE: Okay. And for your reference, when you look at the markup, I'll give you two copies, there really are just a couple of fundamental issues one of which concerns the motion in limine that was agreed that has to do with characterizations like troll and $P D$ and the like. And there's a set of questions and answers about whether or not the invention is practiced and how big the company is, et cetera, et cetera, et cetera, which could only be a set up, we think, for arguing NPE status for Art+Com Innovation Pool --

MR. SNYDER: Your Honor, should we excuse, Mr. Jones?

THE COURT: Yes, we should. But I don't think we should be discussing this now. Why don't we come back, let's say at 10 of 2 , so we don't delay the jury and we can resolve this and then we'll bring in Mr. Jones and the jury and continue with this.

> MR. PARTRIDGE: Very well, Your

Honor. Thank you.

THE COURT: Thank you.
(Luncheon recess.)
THE COURT: Be seated please.
Okay. Mr. Partridge.
MR. PARTRIDGE: Yes, Your Honor.
I started to say before we took our lunch break, Your Honor, that there are -- I wanted to sort of summarize what these objections are about. First, many of the questions go to the equivalent of whether we were practicing, whether ACI was a practicing entity which of course it's not relevant at all to the issues in this case and the second issue is that --

MR. SNYDER: Your Honor, it appears we have an expert witness in the room. Could we excuse him?

MR. PARTRIDGE: Please. And the second is that there is a series of these that also I think relate to the copying issue which is not in the case, and that in terms of whether or not source code was given and that series of questions, the only possible explanation for the inclusion of those is whether or not they relate to copying, which isn't in the case. And the
problem with the set of questions is that it creates an additional problem that I think is confusing and prejudicial, which is the notion that independent development is relevant to an infringement case. And of course it's a strict liability cause of action and so whether or not somebody did it independently is not material and not relevant to the issues of infringement. I do need, since we don't have this document in the record, to at least identify before we finish here the page and line numbers that we find objectionable. But those are essentially the issues that we're raising with respect to these sets of Q and A's.

THE COURT: Do you want to attach this to the transcript as to what has been objected to.

MR. PARTRIDGE: We can do it that way too.

THE COURT: Why don't we do it
that way. We'll call this Court Exhibit A.
MR. PARTRIDGE: And all of my
copies have been distributed other than one that I've marked up by hand, but if you have one that
the court reporter can use.

THE COURT: You can take my
clerk's copy there.

MR. PARTRIDGE: Okay. But those are the objections.

THE COURT: I'll hear from Mr. Snyder. My view as to the first one, that is about the non-activity of ACI is that that doesn't fall under the stipulation which refers to pejorative characterizations of ACI or Art + Com as a non-practicing entity in, in quotes, patent assertion entity, quote, patent troll, quote, or any other similar pejorative characterizations. And I didn't see a pejorative characterization like that in the testimony that you marked. So as to that one, I'm going to deny the motion.

On the other question of the copy, it seems to me that it's difficult for me to see why that testimony shouldn't be admitted that you marked there, so why don't we hear from Mr. Snyder about that.

MR. SNYDER: On the first
category, Your Honor, we completely agree with
you that the issues about pejorative references and this does not make them on the second category what they are calling evidence of non-copying, this is an issue that they opened. Their narrative and chronology in the opening was about how these employees moved from Silicon Graphics to Intrinsic Graphics to Keyhole to Google and then created Earth and we saw them put up their pictures time and time again. Then they played the video testimony of Mr. Jones about him seeing the ball at $S G I$ and we need to combat any inference that there was some kind of copying. Now, it is true --

THE COURT: How about a way of handling this of putting something in the final jury instructions that there is no contention that Google copied the ACI invention. Would that be satisfactory?

MR. PARTRIDGE: It would be
satisfactory to us, Your Honor. As a matter of fact, we are planning on sending you tonight a few additional instructions we were going to propose and that's included in them, so it is acceptable to us to do that as a fix. We'll
probably propose something with respect to characterizing this evidence of lack of activity by ACI as opposed to Art+Com as NPE type stuff as well. But that -- that is acceptable to us. THE COURT: How about that, Mr.

Snyder?
MR. SNYDER: That would be acceptable, your honor. And I believe that that would apply to the designations.

THE COURT: 167.8 to --

MR. SNYDER: Through 171.18.
THE COURT: Yes.
MR. PARTRIDGE: I think it goes over into the next page because the answer isn't completed at 18.

MR. SNYDER: So it would go to
172.2. Those are not consecutive but they are consecutive extracts from what we've marked as Court Exhibit A.

MR. PARTRIDGE: That's correct. I agree with that identification.

THE COURT: That material will be left out of the video that was just identified in this, but the other material I think that's
not covered by the stipulation and can be included in the video.

MR. SNYDER: And just so there isn't any surprise, Your Honor, because this deposition was given in German, we're going to have somebody play the role of the witness and read it into the record.

MR. PARTRIDGE: Mr. Snyder, it was done in English.

MR. SNYDER: Oh.

MR. PARTRIDGE: This one was done in English. You don't have that copy.

MR. SNYDER: My mistake.

THE COURT: I have been working on
the final jury instructions and late this
afternoon after court I'm going to have a revised version of those, which I will post on the docket and you will be able to see. I would suggest that you hold up for the moment in suggesting changes to that until you've been over the new version and make the suggested changes based on the new version. And what I think I'd like to do is to have a conference after you recess tomorrow at around 5:15 or so,
an informal conference to discharge the charge to try to work out as many of these issues as can be worked out and then when we have the formal charge conference on Friday morning you'll be able to make any objections to things you still object to, but this is an effort to resolve as many of them as possible informally. And I'd like to limit the number of attendees at that conference, which we'll have in the conference room here, to two lawyers for each side.

MR. PARTRIDGE: That's acceptable to us, Your Honor, that's fine.

MR. SNYDER: That's fine, Your
Honor.
THE COURT: Anything else we need
to do before we bring the jury back in?
MR. PARTRIDGE: Nothing from the
Plaintiff's, Your Honor.
MR. SNYDER: Nothing from the
Defendant.

THE COURT: Okay. Let's bring the jury back in.
(Jury enters.)

THE COURT: Be seated, please.
And Ms. Simmons.

MS. SIMMONS: Thank you, Your
Honor.
BY MS. SIMMONS:
Q. Mr. Jones, I think before the break we were looking at Plaintiff's exhibit 329. And Mr. Jones, let's focus in I think you had explained what this was and I just want to focus you in on that last sentence. What does it say?
A. Says from me to Pavel, says please know that we are eager to speak with you and do believe that your patent seems useful as a defense against possible future legal actions.
Q. Why were you eager to speak with Mr. Mayer?
A. I was looking forward to seeing his hardware, but also even though I couldn't use the patent in the engineering part of Google, I thought that maybe the patent team could use it and they seemed willing to entertain that conversation.
Q. And when you say the patent team
could use it, use it in what way?
A. They have kind of like a program to buy or license patents that they thought that maybe if there was ever a lawsuit with Microsoft or something, that they could say we have this army of patents and you have an army of patents and maybe we should just have peace. I don't know the word for that, but there's sort of a mutual standoff. And we're a young company. We had only been in business a few years at that point, so we didn't have any of these patents, so we thought maybe this could be one of those.
Q. Did Google want the patent to go sue other companies?
A. No, we have never asserted, as far as I know, any patent against anybody, and Larry was not wanting to do that. We thought once you have money basically you start getting sued and Google was making money ans we knew we were going to get sued left and right by people at random, so we thought we could build up a little barricade of patents around things even though we didn't do them to deter people.
Q. Did you go see the Art+Com people
in Germany?
A. I did.
Q. What did you talk about?
A. Several things. We talked about
licensing the patent of buying the patent, briefly, and we talked about most of the time was spent touring their facility, and they showed me really, you know, kind of like the ball, but different. Rooms with projectors when you walk on the floor it made ripples also in the floor with pictures, these kind of nice trade show exhibit things.

They showed me the nice demo out on the balcony that I liked a lot. They showed me what they do, and we talked about patents as well.
Q. What happened next?
A. Well, I went away.
Q. Did you have any further
communications with Art Com after your visit to Germany?
A. I remember them sending mail to Google asking about negotiation and things like that.
Q. Let's, if we could, Mr. Ang, put up Defendant's Exhibit 1109. And there are no objections to this exhibit.

Before we blow it up, do you recognize this exhibit, Mr. Jones?
A. Yes, I do.
Q. What is this?
A. This is a mail from Art+Com to Michelle Lee at Google, nut it includes me on the list of people who are being notified of the mail. It's a -- it's mail about basically Art+Com and Google had had a conference call and they talked about things and Art+Com was telling Google basically here Google, here is what I heard from the call. Please let me know if you agree with this or if you disagree with this so we can agree together what we agreed in the call, what topics were in the call.
Q. What did it mean that in the first bullet point that Google viewed the patent as a quote, nice to have patent?
A. Well, it basically confirmed the opinion I had going in which was that it wasn't going to be a need to have patent, that it was
going to be a nice to have patent. So we had the, you know, a couple of categories of patents and the ones that describe something that we might want to start doing, you know, like we make cakes, this is a good kind of icing, we want to put that icing on our cakes, we license the patent. While if it describes something we already did, which would be like terrifying, was like a necessary thing, wasn't like that. It was a nice to have. It might be good in the patent team's defensive arsenal in case we were attacked, but nothing more than that.
Q. What about the second bullet, what is that referring to?
A. This is -- want me to read it?
Q. Sure.
A. Says even if the patent would be a hundred percent airtight or at least meeting Google's comfort level, the maximum price Google would be willing to pay is $\$ 1$ million to buy the patent. So that means a couple of things. One it meant that it wasn't air tight. And air tight is not a -- I don't think it's a technical lawyer phrase. I think it's just the meaning is
if it was really a good patent, you know, if it was prepared right and disclosed right and filed right and all that kind of stuff is just right, then in that world, even that world we would not be willing to pay more than a million, but it doesn't quite say it here, but the even if was because it was perceived that it was none of those things, that it was actually flawed in some technical way and that it wouldn't be trustworthy for Google who's only interest of it was to have a defensive posture. They were afraid -- I remember being told in the hallway by somebody, this doesn't seem like a good patent. So I think they were trying to say look, even if it was good, it would only be this much, but it's not good.
Q. What happened next?
A. That's kind of interesting what
happened. I got another e-mail from Art+Com not saying the patent was good, but saying that we should pay more.
Q. Let's put that one up. Mr. Ang, that's Defendant's exhibit 1071. Is this the e-mail that you're referring to, Mr. Jones?
A. Yes, yes. And so that's from Pavel again and he's basically saying look, I talked to Andreas, our CEO, and I convinced him that we think a price of 3 to 5 million would be acceptable at this time. And so they thought -you know, we had said look, we wouldn't even do more than a million even if it was perfect, which is isn't, and they said well, why don't you pay 3 million now or 5 million. I guess usually when somebody says 3 to 5 , they mean 5 and you mean 3. But whatever it is, it was more than 1, which we already told them we wouldn't pay more than that. And at this time was a non-starter because it was already -- we had already said, look, it's not worth money at all because of its problems.
Q. How did Google respond to this e-mail?
A. I don't know that we ever responded to it. It just was like a nonresponsive answer. Tell somebody look, if you fix the car, it might play. And they say no, why don't you buy it now for this big number and just say well, keep your car.
Q. What happened with the discussions in 2006 between Google and Art+Com?
A. They ended. As far as I know, they ended.
Q. At any point during the discussions in 2006 did Art+Com tell you that it thought that Google infringed its patent?
A. No.
Q. What about what Google was saying to Art+Com, did anybody at Google, yourself including, that you know of tell Art+Com that Google would buy the patent at any point?
A. No.
Q. At any point during those conversations did you tell Art+Com that you thought Google didn't practice the patent?
A. Every single time I spoke to them.
Q. Do you know whether there were any communications between Google and Art+Com after 2006?
A. I do know of one subsequent conversation, yes.
Q. When was that?
A. I got an e-mail in 2010 from

Art+Com. I had kind of forgotten about it. They wrote to me again in 2010 .
Q. What did you do in response to that e-mail?
A. I forwarded it to the patent people.
Q. Go ahead?
A. I forwarded it, I thought here it is again, so I forwarded it to the patent people.
Q. Did you have any further communications with Art+Com after that?
A. Never.
Q. When was the next time you heard of or about Art+Com?
A. That was last year or yeah, last year. I, you know, I was in my office and I was descended upon basically or visited by two Google attorneys and they said do you remember Art+Com? And I said yeah. And they said they just sued us, and, you know, we may be, you know, talking to you in the future about the trial things. So they were right. And here I am.
Q. Okay. Thank you, Mr. Jones. I have no further questions.

MR. HAWES: May I approach the witness, Your Honor?
CROSS-EXAMINATION

BY MR. HAWES:
Q. Good afternoon, Mr. Jones.
A. Good afternoon, sir.
Q. So let's kind of start with SGI. You talked a bit about your ClipMapping patent. Do you remember that?
A. I do remember that.
Q. Were you the only inventor on that patent?
A. There were four named inventors on that patent.
Q. Did you work together with the other inventors to prepare a patent application?
A. We did, in a sense, yes, we did. We all worked together on the work. SGI used outside patent firm to produce those, a company called Stern Kessler Goldstein \& Fox in Washington D.C. We each interviewed with the patent examiner, the patent attorney and they
videotaped us and they went away for a long time and produced the patent and they came back to us and review the drawings and review the words.
Q. When you say patent, you mean patent application?
A. Patent application, yes.
Q. That was submitted to the patent office?
A. It did submit. It was issued.
Q. And then a patent examiner took a look at it; right?
A. I imagine so. That's what they do, yes.
Q. And you said that you were not a patent examiner earlier in your testimony. Do you remember that?
A. I did.
Q. So do you have an understanding of what a patent examiner is?
A. I did. I saw the video at the opening of the trial as well. It was very nice.
Q. Is it your understanding the patent examiner looks at the prior technology and compares it to the application?
A. It's my understanding that the patent examiner looks at existing patents and some subset of technology and publications, yes.
Q. Does the patent examiner look at other materials that are submitted by the applicant?
A. Yes, those are the references, just before the description.
Q. And do you remember if you submitted any of those types of materials with your ClipMaps patent application?
A. I'm sure they would be, yes.
Q. Now, you talked a lot about your Earth demo that you created for Cambridge Consulting?
A. A company called Cambridge Research Associates in Virginia.
Q. And you talked about a creating that in your living room; right?
A. Yeah.
Q. What year was it that you did that?
A. 1999.
Q. And so that was after your time at

SGI; right?
A. After I left, yes.
Q. Now, you told your counsel that you weren't contacted by Art+Com while you were at Keyhole. Do you remember that?
A. Excuse me, sir, I told you that I agreed with you it was my living room. Actually it was my dining room.
Q. But it was still in 1999?
A. Yes, sir.
Q. And you testified that you weren't contacted by Art+Com while you were at Keyhole; correct?
A. Yes.
Q. And is it also true that you didn't reach out to Art+Com during that time?
A. Certainly.
Q. Now, when Google purchased

Keyhole, you said that part of the deal was that they take all the employees. Do you remember that?
A. I do.
Q. And you said Keyhole was spun out by Intrinsic Graphics. Do you remember that?
A. I do.
Q. And prior to that happening or perhaps right after that happened, did Intrinsic Graphics create a license agreement so that Keyhole could use that Alchemy technology?
A. We did, I signed that document.
Q. And that included any patent rights to the Alchemy technology; correct?
A. For the use in the -- in their field, yes.
Q. And that field included Earth Viewer; correct?
A. A geographic visualization.
Q. And when Google bought Keyhole, I believe you testified that Google got all Keyhole's assets; correct?
A. I don't know if I testified to that at all. I don't remember discussing assets. But certainly as far as I know, I wasn't a lawyer involved in it. But everything that was Keyhole became Google if that's the meaning that.
Q. And that included contracts

Keyhole had; correct?
A. Yes.
Q. And those included contracts with the government?
A. Yes.
Q. You spoke about how Google took on obligations when they purchased Keyhole. Do you remember that discussion, specifically with regard to buying geographic data?
A. You mean my conversations with executives and we're going to sell this to you, but only if you let us get data for the application?
Q. Yes.
A. Yes, I remember that conversation. It wasn't a contract, it was a discussion in the purchase.
Q. Did Google also take on obligations in the form of long-term contracts with the government?
A. It did.
Q. How long were the support obligations in those contracts?

MS. SIMMONS: Objection. Calls
for legal conclusion.

THE COURT: Overruled.
A. Varying lengths. I'm sure there are many contracts, so I don't know.
Q. Do you remember if Google took on a twenty-year obligation to support the use of Earth Viewer at the government?
A. I remember a lengthy, I think it was twenty years with the National Geospacial Agency. They were one of the investors in Keyhole. And they had the right to use it for free, but we had the right to charge them for support. And in exchange they wanted it to be supported. It's a government requirement that they use supported software and not unsupported software.
Q. Was there, in fact, a twenty year obligation to support?
A. I believe there was. To my
knowledge I don't have -- I haven't seen the actual contract, but I have been told it was twenty years, yes.
Q. Did Google, in fact, support that for twenty years?
A. The twenty years is not up yet.
Q. Has Google stopped supporting
that?
A. Well, they said they would, and they postured to do so. And I have heard that actually that support continued after I left. So I'm not quite sure of the current status of that.

MR. HAWES: Your Honor, may I approach?

THE COURT: Yes.

MR. HAWES: And may I approach the witness?

THE COURT: Yes.

BY MR. HAWES:
Q. And do you see that this is a copy of a portion of your deposition. Your notebook has the first page of your deposition together with the time it was taken. It's the first part of your notebook.
A. I see it.
Q. And at that deposition, do you remember giving the deposition last summer in this case?
A. I remember it vividly. I had
fallen the day before and broken bones in my hands. And I was kind of crippled going into that room that day. I could barely move, so I remember it vividly.
Q. Were you sworn in under oath like you were today?
A. I was.
Q. So what I would like you to do is turn with me in the document that I've handed you, and if you could turn with me, I would like you to look at if you could page 321 of your deposition. Do you see that?
A. I do.
Q. Actually, I'm sorry, can you turn to 260, not 300?
A. I can do that, too.
Q. Thank you.

And do you see my question
stating, "As far as you know, I know you have left Google now, but as far as you know those support contracts have been honored?"

MS. SIMMONS: Objection, Your
Honor. This is improper impeachment.
THE COURT: Let's let the witness
look at it. It's overruled. Let's give the witness a moment to look at the question and answer.

BY MR. HAWES:
Q. The question and answer is in the middle of that page.
A. I see it. Yes. I see the question and answer.
Q. And am I reading the question correctly: "As far as you know, I know you have left Google now, but as far as you know those support contracts have been honored?"
A. I see that.
Q. And your answer, and you can tell me if I read it correctly. "I left within a few months of them being reneged on. That lie happened in January and I walked out the door very soon after that, after helping ESRI build a bridge to Google Earth users who were being stranded."

Do you see that?
A. Yes.
Q. Was that your testimony?
A. It was.

MR. HAWES: No further questions,
Your Honor.
REDIRECT EXAMINATION
BY MS. SIMMONS:
Q. Mr. Jones, going back to the testimony that you just spoke about, did you come to learn that, in fact, Google Earth -Google was continuing to support its Enterprise contract?
A. I did to my great relief. And I spoke to Allen Hustus and Eric Smith about I though we had made a mistake here. And I was glad to see just when I leaving, and I was glad to see that something was done about that.

MR. SIMMONS: Thank you. No further questions.

MR. HAWES: Nothing further, Your Honor.

THE COURT: Let's see if the jury has any questions.

Counsel approach.
(Side-bar discussion:).
THE COURT: The question is why did you leave Google.

MS. SIMMONS: I don't see how that's relevant to the issue in this case.

MR. PARTRIDGE: The question is fine with us, Your Honor.

THE COURT: I don't think it's relevant. I'm not going to ask it. Thank the jury. There was one question, I've decided that it should not be asked because it's not relevant to the case, but I thank you for your attention. I guess now the witness is excused subject to recall?

MR. PARTRIDGE: No need to recall, Your Honor.

THE COURT: All right. Thank you, Mr. Jones.

THE WITNESS: Thank you, sir.
MR. SNYDER: Your Honor, Defendant Google next calls by deposition Mr. Rous. Mr. Rous is the director of publications at the Association for Computing Machinery and he's going to testify about their practices related to publications at industry conferences, including in a conference called SIGGRAPH. The video is about seven and a half minutes long.
(Video playing.)
Q. Mr. Rous, could you please state your name for the record?
A. Bernard Rous.
Q. Who is your current employer?
A. Association for Computing Machinery.
Q. Would it be okay if I called Association For Computing Machinery ACM?
A. Yes.
Q. Okay. And how long have you worked at ACM?
A. Since 1980.
Q. What is your current position at ACM?
A. I'm the director of publications.
Q. At ACM were you always involved in the publications department?
A. Yes.
Q. And as the director of publications, could you briefly outline your duties and responsibilities?
A. Yes. I'm responsible for the direction of the publications program,
development of new titles, the operations, the production, the strategic direction for delivery, which is now through our digital library. Let me just ask some general background about ACM. What does ACM do, just generally.
A. It's a not for profit scientific and educational society for professional computer scientists, researchers, educators and practitioners in the field. We produce a number of programs for that community, and for a broader community that's outside -- it's a membership organization, so both for our members and outside the -- that. The largest programs are conferences and publications.
Q. Can you generally describe what the SIGGRAPH convention is?
A. So within the ACM organizations there are a number of special interest groups called SIG, special interest groups. And SIGGRAPH is the special interest group on graphics. And most of the SIGs run conferences. And SIGGRAPH has its annual SIGGRAPH conference event, which consists of a number of tracks or
programs. In 1995 it had an exhibit, a big exhibit hall for industry. And it has a technical program, it has electronic theater, an animation festival, there are a whole bunch of different tracks.
Q. Okay. And what was ACM's relationship to SIGGRAPH?
A. SIGGRAPH is one of ACM's special interest groups.
Q. Okay. And do you -- in terms of the SIGGRAPH convention, do you know -- can you describe who generally attends those conventions?
A. Yes. The -- the SIGGRAPH event is attended by both computer scientists and people who are in industries related to computer graphics.
Q. Is attendance open to the public, or is it by invitation?
A. It's open to the public.
Q. Okay. And so SIGGRAPH '95, do you know where that one was held?
A. Los Angeles.
Q. And do you know -- well, we
mentioned August ' 95 , but can you tell me what dates the conference was held?
A. August 2 to 11 .
Q. And how about the exhibition for SIGGRAPH '95?
A. It ran alongside those -- within those dates.
Q. Were any materials given to attendees of SIGGRAPH '95?
A. Yes. Generally speaking, the attendees are given -- the CD-ROMs that are produced as hard copy of the proceedings are also distributed to attendees, and in this case and also the -- this program and buyers guide was also distributed.
Q. Was this $C D$ made around the time of SIGGRAPH '95?
A. Yes.
Q. Was it made prior to SIGGRAPH '95?
A. Yeah, it was manufactured prior and delivered so it could be handed out at the event, yes.
Q. Do you know if there -- if these CD's were given out during SIGGRAPH '95?
A. Yes.
Q. Okay. Do you know if they were given out only at the beginning, during the admission period?
A. Well I -- I -- normally speaking -- I can't talk to the specific year, but normally speaking when people enter, they have their registration badge, or whatever they get to acknowledge that they paid their registration fees, and as they come in, they pick up what's being distributed to them.
Q. Do you know about how many CD's were created for SIGGRAPH '95?
A. No, I don't.
Q. Okay. Or similar question, but do you know how many CD's were distributed?
A. No, I don't.
Q. Did you personally supervise the creation of the multimedia or proceeding CD's for SIGGRAPH '95?
A. No.
Q. Do you know if anyone in your publication office did that?
A. Certainly nobody who is there now,
and doubtfully that it was actually somebody on staff at headquarters for $A C M$ that supervised that vendor.
Q. And just so that we're clear, the multimedia and proceeding CD's for SIGGRAPH '95 would not have been created by your office of publication but by a vendor that was hired for that purpose?
A. Yes.
Q. And sitting here today, you can't recall who that vendor was?
A. No.
Q. Now, I take it that this was your offices general practice that these CD would be furnished by vendors separate from your office?
A. Yes.
Q. Now, when these CD's were shipped to the conference site, was that done by the vendor or would the vendor send the CD to your office and your office would be the one to arrange for the shipment?
A. To the best of my knowledge, it -it is shipped directly from the vendor to the sites that are specified in the order.
Q. Do you have any clear recall of anyone having confirmed personally to you that those CD's had been shipped to the conference site in Los Angeles?
A. No.
Q. Have you ever attended a SIGGRAPH conference?
A. Yes. I think I did go to one of them.
Q. Okay. Did you go to the one in Los Angeles in 1995?
A. No.
Q. When you say that the CD-ROMs were distributed at SIGGRAPH '95 in Los Angeles, are you basing that testimony primarily on your understanding of the general practice of how ACM goes about putting these conferences together?
A. Yes.
(Video end.)
MR. SNYDER: That is the end of the video, Your Honor. Defendants move into evidence Defendant's exhibits 1001, 1001A and 1001 B.

MR. SPEARS: No objection.

THE COURT: They are admitted.
MR. SNYDER: Thank you, Your
Honor. And also for Mr. Jones testimony Defendant's move the admission of 1095 and 1109 .

MR. HAWES: No objection, Your
Honor.

THE COURT: They are admitted.
MR. SNYDER: Thank you, Your
Honor. Defendant Google calls its next witness Mr. Stephen Lau. Mr. Lau previously worked for SRI International and Mr. Lau is going to testify about his work in the early and mid '90s on the SRI TerraVision system and the questioning will be done by Mr. Almeling.

STEPHEN LAU, JR.,
the deponent herein, having first been duly sworn on oath, was examined and testified as follows:

MR. ALMELING: Your Honor, may I proceed?

THE COURT: Yes. And why don't you introduce yourself.

MR. ALMELING: Thank you, Your
Honor. My name IS David Almeling and I'm also
one of the counsels for Google. It's good to see you again.

BY MR. ALMELING:
Q. Good afternoon.
A. Good afternoon.
Q. So you're here today to talk about SRI TerraVision. Let's take those in turn. What is SRI and what is TerraVision?
A. SRI is a not-for-profit company, formally known as Stanford Research Institute, and we performed research for commercial and also government entities.
Q. TerraVision, what is that?
A. TerraVision was an earth visualization application that I developed that used a course defined algorithm to retrieve images data across the network from multiple servers.
Q. Before you worked at SRI, where did you work?
A. I worked at a company named ExpertSoft down in San Diego, California.
Q. And what are they and what did you do?
A. ExpertSoft was a consultant company, we did consultant work for working on contracts with the federal government and also commercial entities also. And my job there was develop visualization including terrain visualizations.
Q. And is it correct that then you went to SRI?
A. Yes, I was hired directly by SRI to work on the Magic project to develop the terrain visualization application, which had be -- came to be known as TerraVision.
Q. For how long did you work as SRI?
A. I worked at SRI from 1992 to May of 1996.
Q. How about now, where do you work?
A. I work at North Berkley National Labs in Berkley, California.
Q. Do you work for Google?
A. No, I do not.
Q. Have you been retained as a consultant in this litigation?
A. Yes, I have.
Q. How are you being compensated for
your work in this litigation?
A. I make 450 an hour.
Q. Does your compensation depend in any way on the testimony you give or the outcome of this case?
A. No, it does not.
Q. And now let's return to

TerraVision. Can you give a little more detail about what specifically you did as part of TerraVision?
A. I was hired to develop the application that became known as TerraVision. I wrote about 89 percent of the source code.
Q. The name TerraVision, at SRI who came up with that name?
A. I did.
Q. How did you do that?
A. When I worked at ExpertSoft, I worked on a project known as Exterra, and when I went to SRI it was being called terrain visualization application, which is a mouthful. We needed a new name, so I took the old name Exterra, Terra, vision, visualization and put the two together and people liked it. It stuck.
Q. What did your colleagues think when you told them about the name TerraVision?
A. They liked it much better than terrain visualization application. It was a mouthful.
Q. TerraVision was a government project. What were the goals of TerraVision?
A. One of the goals of TerraVision was to do research and visualization for the public domain for the general public. We were funded by the federal government to do that. Our research was open to be publish.
Q. This is a patent case. Did SRI ever get any patents on TerraVision?
A. No, we did not.
Q. Why not?
A. Yvan Leclerc who was my manager and colleague discussed it, however, the project that we were working on, TerraVision, was meant for the public domain. It was funded by the federal government. And we also were looking at the algorithms we were developing and we believe it was not innovative enough to be a patent.
Q. Why did you think that?
A. Because one thing, I was already working on algorithm such as coarse to fine.
Q. You mentioned a name, Yvan Leclerc. Who was that?
A. Yvan Leclerc was my manager and also my colleague.
Q. Where is he now?
A. Unfortunately Mr. Leclerc has passed away.
Q. So let's dive into TerraVision a little bit. Can you show and tell the jury how it worked.
A. Yes. It's a visual application so what I have is a video from 1994 that can be shown.
Q. I would like to direct you in your binder to exhibit DTX 1088 .

MR. ALMELING: Your Honor, neither this exhibit or any of the others that will be used in this direct examination have been objected to. May I publish it to the jury?

THE COURT: Yes.

BY MR. ALMELING:
Q. Before we play Exhibit 1088 , can
you explain what it is?
A. The video that you're about to see, that was a video that Yvan Leclerc and I developed and published so that people will be able to see how TerraVision worked. If I was not able to demonstrate it or we were unable to demonstrate it, it was meant to be shown at conferences and symposiums.
Q. When did you guys create it?
A. Early 1994.
Q. How long is the video and how long is the bit that we're going to watch?
A. The video itself, entirety is about eleven minutes long and what you're going to see is a four-minute excerpt.

MR. ALMELING: Mr. Ang, can you play the video.
(Exhibit DTX 1088 is played for
the jury.)
(End of videotape)
BY MR. ALMELING:
Q. The video looked really, really
grainy. Why?
A. Well, it was -- we made it in

1994, and this was a copy taken off of VHS tape so it degraded over time. One of the other things in terms of the terrain being fuzzy, we wanted to show it working across the network and pulling images from across the network.
Q. Did that look, video look better when it was played in 1994?
A. Yes, a lot better in 1994.
Q. Let's talk about some of the things that the video said. One is something called ISS. What's that?
A. The ISS was the image server system which was developed by Lawrence National Labs and it would store the image data that was provided to TerraVision.
Q. And where were the ISS servers for the demonstration shown in the video?
A. In the video itself, the ISS we had ISS located at the National Lab in Berkley. We also had a ISS at the University of Kansas, KU, who was also a partner in the project. Also a server in Kansas City, and at U.S. Geological Survey up in Sioux Falls, Minnesota, and Minnesota Super Computer Center.
Q. The video mentioned that in some instances you couldn't predict where the user was going to go such as if a user clicked in an unexpected place. What happened then?
A. It used a course to fine algorithm as you saw in the video to try to come up with the best display it could. We also would send out on the request to the ISS to try to retrieve the information to be able to display it.
Q. For those instances that you just described, how would the TerraVision system determine which tiles to then fetch?
A. So we used what's called a frustum, a field of view. So it would project out where you're looking in the terrain and where you're at, figure out how far away each of the tiles should be, what the best tile there, so as you moved around the field of view, like a flashlight would move over terrain and you would be able to figure out which tiles are the best tiles for that view.
Q. The video also mentioned a group of four tiles. What's that?
A. The group of four tiles utilized
what's called a Quadtree which was an internal representation of the coarse to fine, coarse to fine resolution pyramid.
Q. And one more vocabulary, the video mentioned a resolution pyramid. What's that?
A. The resolution pyramid as you saw in the video there, because you didn't want to have all of the tiles, you couldn't have all the tiles on the screen at one time when you were looking at a large area, we would take a large sample of one tile, subdivide that into four down to the next lower level resolution, sub those four down into the next lower resolution until you got to the fine resolution, the highest resolution that you had.
Q. At the beginning of the video is 2D and toward the end it was 3D or three-dimensional. How did that work?
A. So in TerraVision you could display the information either as a 2D, it's flat like you saw on the screen, or else in 3D, like a flight simulator like you're looking out the window.
Q. In those cases of a
three-dimensional view, how did TerraVision create that view?
A. From the US Geological Survey, we received what's called a digital elevation model, as you saw the mountains and all the elevation there. We take that information from the ISS, we would tessellate it, break it down in polygonal triangles, take the images corresponding from that, from the ISS, and then drape that over the terrain so that then you see a three-dimensional view like it's out the window.
Q. I'm not sure I heard you. Did you say polygonal triangles?
A. Yes.
Q. What's that?
A. The polygonal triangle, it's called tesselation.
Q. Thank you.

Did you prepare any materials as part of preparing the video?
A. Yes. We, Yvan and I created a script.
Q. When did you create that script?
A. Early 1994, the same time as the video.
Q. Did you ever show it to anyone?
A. Yes, it was published at the Magic Technical Symposium in August of 1994.
Q. Mr. Lau, I'm going to show you an exhibit which has been marked DTX 1087.

Mr. Ang, if you could pull that up, please.
What is this?
A. What you're seeing on the screen there is the cover of the 1994 Magic Technical Symposium proceedings that occurred at the University of Kansas in August of 1994.
Q. We'll talk more about the symposium in a little bit. First I want to show you a page of this.

And Mr. Ang, if you could please turn to the slide that ends 367 .

What's this?
A. This is a script for the TerraVision video that you just saw.
Q. And does this script accurately represent the entirety of what is TerraVision?
A. Unfortunately not. As you saw,

TerraVision is a very visual application so one would really need to see the video with the script itself. If you scroll down a little bit, please. You see in square brackets there near the bottom, it says fly through 37 seconds, that is what you would be seeing on the screen while the script was being read.
Q. Other than the script and the videos, did you create any other materials in the early 1990s about TerraVision?
A. Yes. We wrote technical publications that were published.
Q. I would like to show you Exhibit 1023, and that is DTX 1023. Thank you.

What's this one?
A. This is a SRI technical paper that Yvan Leclerc and I wrote and published. It described TerraVision and how TerraVision operates.
Q. You mentioned that you published it. When did you publish this?
A. April of 1994.
Q. How do you know that?
A. I remember crafting this document
and submitting it to $S R I$ international
publication system and they issued a number to it, and the number issued was number 540 .
Q. I want to show you a couple of pages in this document. Let's start with the one that ends 159. And I want to show you the figure at the top. Figure 1. Do you see that?
A. Yes, I do.
Q. What is that?
A. That's a representation of the Quadtree.
Q. And then the TerraVision system use a Quadtree?
A. Yes, it did.
Q. I also want to show you a little bit further down this same page if I could, the second paragraph under the heading 2.4. Can you please read that first sentence aloud and then explain to the jury what that means?
A. Our approach is to use a coarse to fine search on a Quadtree representation of the terrain.

And that is how TerraVision was
able to use -- be able to do the search from
coarse to fine, low resolution to high
resolution, fine resolution, to display it, retrieve information from across the network.
Q. Was TerraVision the first time that you ever used a coarse to fine process for an earth visualization program?
A. No, it was not.
Q. When was it?
A. When I was working at ExpertSoft back in the early '90s.
Q. And in what context did you use a coarse to fine earth visualization process?
A. At ExpertSoft my job there was to develop this terrain visualization, so when the common technique to do is to use coarse to fine in order to be able to display a nice view of like an out the window.
Q. I would like to show you another exhibit. This one is DTX 1193. Mr. Ang, if you could pull that one up. What's this one?
A. This is a publication of the overview of the magic project. It was created by all the members of the magic project,
contributed to it, and it was Barbara Fuller and Ira Richer were the ones that took all our materials and condensed it down into one document.
Q. You said the word magic a lot. What is magic?
A. Magic was the federal, umbrella federally funded research project that terrain visualization was a trained visualization application part of that project.
Q. Who authored this article?
A. All the members of the magic consortium created portions of this document, and Barbara Fuller and Ira Richer did the editing down into one cohesive document.
Q. You mentioned it was published in December of '93. How do you know that?
A. I remember crafting it and drafting it back in December of 1993, submitting it into the other members of the magic consortium, submitting it into Barbara Fuller and Ira Richer who edited down and shipped it back for us to review.
Q. I want to get your thoughts on two
more documents. First is DTX 1036. And again, what is this exhibit?
A. This exhibit is the proceedings that were handed to attendees from the 1995 Magic Technical Symposium that was held in August of 1995 in Minneapolis, Minnesota.
Q. Were you there.
A. Yes, I was.
Q. What was your role regarding the materials that are in Exhibit 1036?
A. Yvan Leclerc and I crafted the terrain visualization materials that went into the proceedings that was published in the proceedings?
Q. I want to show you a figure in this document. It's at page NO65. The top figure I want to talk about. Can you please explain what's shown here?
A. So this is a graphical representation of the magic testbed. Magic was a high speed network and this is a testbed. All the boxes around there is a how -- was showing how you could have multiple ISS servers located anywhere on the network and also you could have
terrain visualization running at multiple locations simultaneously.
Q. Can you point out where the various ISS servers are?
A. Starting from the top, you see the USGS Data Center and you see the ISS server, there is three of them. And going over to the three o'clock position, you see the US West Compass Lab in Minnesota had another ISS lab there. You have another ISS distributor in Kansas City, the Sprint headquarters, and then at the 7 o'clock position, you have another ISS distributor at the University of Kansas in Lawrence, Kansas. And then finally you have a ISS in Fort Leavenworth in Fort Leavenworth, Kansas. Those are all the participants of the magic project.
Q. Were all these ISS servers at their geographical locations used as part of the terrain visualization system?
A. Yes, that was the purpose of the terrain visualization system to be able to pull data from multiple locations.
Q. Next is DTX 1037. I want to get
your thoughts on this one, too. Can you please pull that up, Mr. Ang.

Same thing, what is this document? Let's start there.
A. This document is another publication that Yvan Leclerc and I created. This was one that described the tile sets which is what terrain visualization used in order to be able to display the pages.
Q. When was this document published?
A. This was also published in April of 1994.
Q. I want to show you one page on
this. DTX 1037, page 176, those are the last three digits, section 1.1 .4 is about coordinate systems. What's this section about?
A. This is about the various coordinate systems that was in use within TerraVision.
Q. And can you describe some of those coordinate systems?
A. Yeah. We used various coordinate transformers within TerraVision. We used transformers from a three-dimensional, that is
where the terrain is, to the two-dimensional screen, that is here on the screen. Another one we used was coordinate transformation was from latitude longitude to a number of -- so you are point of view back to the origin, like zero zero zero zero zero instead of that long.
Q. That last one, can you explain why you did that?
A. Yeah, because you were able to teleport and move from various locations very quickly like say from Wilmington, Delaware here, which had one set of latitude and longitude coordinates to say Seattle, Washington, which had a completely different set of latitude longitude coordinates, those are very big numbers. The earth is very big. And at the time you could get precision errors in doing those calculations. So what we did is we normalized that down, brought those down, translated you back to zero zero zero, wherever your point of view was, in Wilmington or Seattle and used a coordinate system based upon that.
Q. You've talked about your video, we've talked about some of your documents. Now

I want to move on and talk about demonstrations. Did you ever use TerraVision in public?
A. Yes. We demonstrated TerraVision in multiple locations, including the 1994 Magic Technical Symposium and also at SIGGRAPH '95 in Los Angeles, California.
Q. Let's start with the latter and of course everyone in this room knows what that is because we've been talking about it for days. Did you attend that conference in 1995?
A. Which conference?
Q. SIGGRAPH '95?
A. Yes, I was in attendance at SIGGRAPH 1995.
Q. And did you present anything as part of that conference?
A. Yes, I did live demonstrations of TerraVision in operation on the exhibit floor retrieving data from the, across the network across the magic network and also showed the video that you saw in a loop on a TV screen.
Q. How did the video that you showed compare to the one that we all watched?
A. A lot better quality. So no, it's
the same video, but it was a clearer quality, but it was from back then.
Q. How about the demonstrations, how did you demonstrate how TerraVision worked at that time?
A. So had a workstation there that actually could run TerraVision. And once again we had ISS's scattered throughout the magic network as you saw. So TerraVision in operation would actually pull that information across the internet from the magic network and display that in real time on the show floor.
Q. How many people saw that demonstration?
A. Approximately about at least 500 .
Q. And how did that demonstration of the TerraVision system compare to the features that were shown in the video?
A. They are the same features that were shown on the video with TerraVision.
Q. And how do the features of the version of TerraVision that you've demonstrated compare to the features described in the documents that we walked through?
A. The features of TerraVision that was demonstrated at SIGGRAPH 1995 were the same that was, that was in the papers that had been published to date, including the ones that we have talked about.
Q. And from where did the -- which ISS servers throughout the country did the TerraVision system that you demonstrated at SIGGRAPH '95 request data?
A. We requested data from ISS server at Multiple International Laboratory. And we also pulled data from ISS servers across the Magic network in Lawrence, Kansas, Sioux Falls, South Dakota, so we were demonstrating not only TerraVision, but Magic network.
Q. Art+Com, did you see them at SIGGRAPH '95?
A. Yes, I did.
Q. Did you talk with any of them?
A. Yes, I did.
Q. Did you exchange any materials?
A. Yes. They actually were literally across the hall, not hall, across the aisle from me. And we thought it was kind of funny that
they were across -- so I talked a lot with them and I also gave them the source code to TerraVision.
Q. I'm sorry, you gave the

TerraVision source code, you gave that to Art+Com?
A. Yes.
Q. Why can you do that?
A. So once again, Magic was a -TerraVision was a federally funded project that was meant to be put in the public domain so people could use those algorithms in the spirit of collaboration. They were very interested in how we were able to retrieve information from across the network and to be able to do that in real time. They were interested in the high resolution of our data, so in the spirit of collaboration provided them with the source code, walked them through it and talked to them about it.
Q. How did you show them the source code?
A. I had the source code there that was compiled to run on the workstation to get
the demo running, so during the time we were setting up I could show them, walk them through the source code.
Q. Was SIGGRAPH '95 the first time that you ever heard of Art+Com?
A. No, it wasn't actually.
Q. When was it?
A. Late 1994.
Q. How did you hear of Art+Com in
'94?
A. So I live in San Francisco and one day I was driving and there was a plant store or flower shop called TerraVision. I thought that was kind of funny that somebody was using the exact same name for something completely different. When I got to my office I decided to type it into a very rudimentary search engine back then and I was expecting the flower shop, the plant shop, but Art+Com showed up instead.
Q. What did you do when you learned about that?
A. I showed the website, Art+Com website to my manager.
Q. And then what?
A. We thought it was very interesting the fact that there was another research -application out there with the same name doing a similar type of thing so we contacted them.
Q. I'm going to show you another document. This is DTX-1196. Mr. Ang, if you could please pull that up. Now, this is difficult to read, so I want to take it in parts. Let's start with the two in the front. Thank you. And if you could blow that up even more. I'm having a hard time seeing that. Thank you very much. The to line is to Pavel at artcom.de. Who is that?
A. That was Pavel from Art+Com.
Q. And the cc line, do you see lau@ai.sri.com?
A. Yes, I do.
Q. And is that your e-mail address?
A. That was e-mail address while I was at SRI International.
Q. I want to show you a little bit about this document and particularly what I want to do is I want to show you the third paragraph of the top e-mail, which is an e-mail from Yvan
to Pavel and we'll make this as big as we possibly can and it reads, just so we're on the same page, quote, what is remarkable is not only the similar names, but that TerraVision also uses a multi-resolution pyramid of imagery that allows the user to zoom in from high altitude down to low altitudes and also uses ATM image servers, end quote. I want to focus on the bit about the similar names. What does that refer to?
A. That refers to the fact that both of us was using the name TerraVision.
Q. So what happened next? How did you address these similar names issue?
A. So we wanted to stop having name collision, so we talked with Art+Com, we talked to them about what TerraVision, our TerraVision was doing, they talked to us about what their TerraVision was doing and we both jointly determined that SRI International TerraVision was first, so they decided, they determined -they changed their name to T underscore Vision.
Q. What do you mean that SRI

TerraVision was first?
A. We were first and as we discussed with Art+Com that we were also at least one to two years ahead of them.
Q. Did SRI TerraVision change it's name after that conversation?
A. No, we did not.
Q. And did Art+Com change the name of its system?
A. Yes, they changed it. They changed it to T_Vision.
Q. Were you given any materials as part of your attendance at that conference?
A. Yes, all the attendees received a printed proceedings from the conference itself and also a CD-ROM containing electronic versions from the conference itself.
Q. So I have in my hand a copy of a CD that was produced by ACM in this case and just discussed in the previous video. I'm now going to give this to Mr. Ang. And Mr. Ang, if you could put the $C D 1$ into the $C D-R O M$ drive of your computer and pull that up. Do you recognize this?
A. Yes, I recognize it as the front
of the CD that was provided to us to all the attendees at SIGGRAPH '95.
Q. I want to show you the community folder and Mr. Ang, if you could click on that. Do you recognize this?
A. Yes, I do.
Q. What is it?
A. It is one of the directories on the $C D-R O M$ that was provided to the attendees.
Q. Now, I want to scroll all the way down at the bottom, the index.htm, if you could click on that. And do you recognize this?
A. Yes, I do.
Q. What is it?
A. It is a table of contents for the various research projects that was what was called interactive communities which was the research part of the exhibit hall. And --
Q. Was your research project on this?
A. Yes, you see about midway down, very tiny, tiny font there, it says Magic Gigabit Testbed.
Q. Before we go there, do you see at the bottom where it says T_Vision is another
link you can click on?
A. Yes. I see T_Vision down the bottom there.
Q. Let's go to Magic first. Click on that, Mr. Ang. What's this?
A. This is a description that we submitted into SIGGRAPH '95 that describes the Magic Gigabit Testbed and TerraVision.
Q. And based on what you've seen, do you believe that this is a copy of the CD that you got at SIGGRAPH '95?
A. Yes.
Q. And why, what makes you believe that?
A. I recognize the materials that are submitted in, also on the previous page there was a SIGGRAPH '95 logo. And I also recall some of the research exhibitors that attended there, including T_Vision.
Q. And just so that the, the record is clear here, I want to go to a different exhibit that has some printouts from this. I want to go to DTX-1101B. I'm sorry, 1001B. And if you could click through these documents
briefly, Mr. Ang, just click through the pages from one to the next. What did we just click through?
A. We just clicked through the various folders that were on the CD-ROM to see some of the, some of the material that was provided, including Magic Gigabit Testbed.
Q. We talked about SIGGRAPH '95 and the last thing I want to talk about is the one other conference that you mentioned being at and showing TerraVision and you called it Magic '94. What was that?
A. Magic '94 was the Magic Technical Symposium that we put on in 1994 in Lawrence, Kansas, at the campus of the University of Kansas.
Q. Were you there?
A. Yes, I was.
Q. Did you present anything?
A. Yes. I gave a demonstration, a live demonstration of TerraVision to the attendees. And we also showed, Yvan and I showed the video that you saw a few minutes ago and we also gave a talk about TerraVision at the
symposium.
Q. You said you demonstrated it. How did you demonstrate TerraVision at Magic '94?
A. We had a live demonstration that we worked on a workstation and -- on a workstation, and we had ISS's located at various locations on the magic network and we did a live demonstration of TerraVision being able to retrieve the data from across the network in real time as you fly.
Q. And about how many people attended that demonstration?
A. Approximately about a hundred people.
Q. How did the features of the TerraVision system that you have demonstrated at Magic '94 compare to the features that we saw in the video?
A. The same features that was demonstrated live was on the video.
Q. And how do the features of the version of TerraVision that you demonstrated at Magic '94 compare to the documents that we walked through?
A. The features of TerraVision then was all -- was equivalent to all the papers thanked been published to date.
Q. The last question I have for you is from where did the TerraVision system that you demonstrated at Magic '94, where did it get its images from?
A. We had multiple ISS servers in Sioux Falls, South Dakota, Lawrence, Kansas -Sioux Falls, South Dakota and Minneapolis Supercomputing Center at Lawrence Kansas.

MR. ALMELING: Pass the witness,

Your Honor.

MR. SPEARS: Before we proceed to cross, might be good for afternoon break.

THE COURT: Why don't we take 15
minute break and we'll come back. Of course the jury should not discuss the case.
(Jury exits.)

THE COURT: Thank you. Sit down.

Anything before we break.

MR. PARTRIDGE: Nothing from the Plaintiff, Your Honor.

MR. SNYDER: Nothing from

Defendant, Your Honor.
(Short recess.)

THE COURT: Ready to bring the
jury back?

MR. SNYDER: Yes, Your Honor.

MR. SPEARS: Yes, Your Honor.

THE COURT: Someone bringing the
jury back?
(Jury enters.)

MR. SPEARS: Ready?

THE COURT: Yep, we're ready.

BY MR. SPEARS:
Q. Good afternoon, Mr. Lau?
A. Good afternoon.
Q. This isn't the first time we've met, is it.
A. I'm sorry.
Q. This isn't the first time we've met, is it?
A. No, it is not.
Q. In fact, I took your deposition in

September of last year?
A. Correct.
Q. And at that time you were aware
that Google was being sued for patent
infringement, correct?
A. Yes, I was.
Q. But at that time you were not
aware of whose patent was being asserted against Google?
A. Can you -- I'm sorry, say that again.
Q. But at that time in September of
last year, you were not aware of who owned the patent that was being asserted against Google?
A. No, I did not.
Q. But you know that now?
A. I believe so, yes.
Q. Okay. Have you ever read the patent in this case at a high level of detail, if you'll excuse the pun?
A. Yes.
Q. Okay. You've been hired as a
consultant by Google's lawyers to assist them in connection with this lawsuit?
A. Yes.
Q. And they are paying you $\$ 400$ an
hour for these services?
A. $\$ 450$ an hour.
Q. Okay. I'd like to ask you some questions about SRI International.
A. Okay.
Q. SRI International was formed out of Stanford University, correct?
A. Yes, it was formerly known as

Stanford Research Institute.
Q. And if you go to SRI's facilities
in Menlo Park, California, you will find
placards touting SRI's role in incubating the entire tech industry in Silicon Valley, correct?
A. Actually I haven't been back to SRI International since I left.
Q. But that's a claim that you have heard made by SRI International?
A. Actually no, I haven't actually heard that claim.
Q. In any event, SRI International is a fairly sophisticated organization, correct?
A. Yes.
Q. They do cutting edge research?
A. Yes.
Q. Some of that research is done
under government contracts, correct?
A. Yes.
Q. In fact, much of that research is done under government contracts?
A. That I don't know any more.
Q. The fact that research is done under government contracts doesn't forbid SRI from obtaining patents on that research?
A. That's correct.
Q. Now, so we have SRI International, this very sophisticated research organization in 1995, I take it that if there was a graphic application that $S R I$ had developed and that they were very proud of and that they wanted to record for posterity, that they would have had the technology to do that in 1995?
A. I'm sorry, repeat the question again.
Q. Okay. If SRI International had this graphic application that they developed that they -- and that they were really, really proud of and that they wanted to preserve for posterity, then they would have had the technology to make a record of what that
application can do even back in 1995, correct?
A. That I'm not a hundred percent sure of, I'm sorry.
Q. Okay. So in any event what you describe is the grainy video that was shown to the jury, SRI could have done a lot better than that in 1995 if they'd really wanted to?
A. Actually we created the video in 1994 and it was not grainy.
Q. Okay. So what you're saying then is that SRI International has not preserved a copy of the non-grainy video that was created in 1995?
A. That I don't know.
Q. Okay. If SRI believed that what was depicted in that video was a significant innovation, a significant advance, then wouldn't it seem reasonable that $S R I$ would have made steps to hold on to that decent video?
A. That I don't know.
Q. In any event, once you and Mr. Leclerc got around to discussing the possibility of filing a patent application on your work, you concluded it wasn't innovative
enough to do that?
A. We determined that we were
building on existing algorithms and techniques.
Q. And if you wanted to do that, there were patent lawyers on SRI's staff that would have assisted you in that enterprise; correct?
A. Yes.
Q. Now, you spoke some of a magic symposium that was held in Lawrence, Kansas in August of 1994; correct?
A. Yes.
Q. In April of 1994, you went on extended leave from SRI for personal reasons?
A. Yes.
Q. And I believe you indicated in response to Mr . Almeling that you personally attended that conference in Lawrence, Kansas in August of 1994?
A. I'm sorry, I don't remember the names.
Q. You indicated in response to Mr. Almeling's question that you attended the Magic 1994 symposium in August of 1994 ?
A. Yes. Sorry.
Q. And that was in Lawrence, Kansas?
A. Yes, it's in Lawrence, Kansas.
Q. That's not true, is it, Mr. Lau?
A. That the technical symposium was
in Lawrence, Kansas?
Q. No, that you attended that symposium?
A. It is true, I did.
Q. Do you recall giving deposition testimony in connection with a lawsuit styled Skyline Software versus Keyhole?
A. Yes.
Q. That testimony was given over a multi-day period in June of 2006 ?
A. Yes.
Q. You were under oath at that time and swore to tell the truth?
A. Yes.
Q. I would like to hand out a transcript from that deposition and the pagination is a little wonky which is why we put a tab to direct you to the portion of the transcript that I would like you to look at.

And that portion of the transcript appears at page 141. Are you with me?
A. Sorry, 141 , yes.
Q. At line five.

THE COURT: Give the witness a
moment to look at it.
MR. SPEARS: Okay.
Q. Can I proceed?
A. Yes.
Q. At line five of that page you were asked, "At the bottom of that page there is a reference to a TerraVision videotape made by Dr. Leclerc for the Magic Technical Symposium in August. Do you have recall a videotape being made of the TerraVision project?"

Can you read aloud your answer?
A. "Yeah, the reasons yes, Yvan and I made the tape because at the time I had just come back from medical leave and I was unable to travel during that time period, so in order to have a demonstration in order to talk about it, there was a videotape that was created and was presented at the conference."
Q. I am going to hand out the second
volume of that deposition. And once again for convenience, we have flagged the page that I am interested in which we are addressing your attendance at that conference in Lawrence, Kansas. Could you turn to page 168, line 24. Are you there?
A. Yes, I am.
Q. And you were asked: "When approximately was this video prepared?"

What was your answer?
A. \quad In 1994, summer of 1994."
Q. And the very next question at line one of page 169, "What was the purpose of this video?"

What was your answer?
A. "The purpose of the Magic video was to demonstrate TerraVision at the Magic Technical Symposium because they had -- I was partially on medical leave at that time. I was unable to attend the symposium and so the videotape was created in order to be able to demonstrate the TerraVision system in my absence."
Q. And your testimony in 2006 was
that did you not attend that symposium in
Lawrence, Kansas?
A. Yes, in 2006 .
Q. And 2006 was nine years closer to the events in question that the testimony that you have just given today?
A. Yes.
Q. All right. Now, let's talk some about the Siggraph 95 conference in Los Angeles. That's a conference that's attended by people who are interested in computer graphics and visualization?
A. The Siggraph conference?
Q. Yes. If you're interested in networking there are other conferences that you go you can go to; correct?
A. Yes, I attend Siggraph.
Q. During the course of that conference, you would from time to time demonstrate TerraVision to folks who are walking around the conference hall; correct?
A. Yes.
Q. And if I were one of the folks walking around the conference hall, one of the
things that I would see would have been a less grainy version of the video that you just showed the jury; correct?
A. Yes.
Q. And if I followed, if I asked you questions about can I see some source code, can I see this or that, you would have responded to those questions?
A. Yes.
Q. But if those types of questions were not asked, the only other things that you would demonstrate would be the variability of this viewing frustum that you talk about and something of the network performance; correct?
A. No, that was not the only thing that I would demonstrate.
Q. I would like to show -- let's go to the deposition that you gave in connection with this. And I would direct your attention to page 177. No, I'm sorry, I want to take you to page 223.
A. I'm sorry, I don't see the page numbers on here.

THE COURT: The page number is not
on it.
A. It starts at 337 .
Q. At 337?
A. Or actually at 336 .
Q. I handed you the wrong document.

Sorry. I'll move on, Mr. Lau.

Now, you spoke some about some CD-ROMs and you were shown a CD-ROM during the course of your examination. Do you recall that?
A. Yes.
Q. Now, do you recall that, in fact, there were three CD-ROMs prepared for Siggraph 95?
A. That I don't recall the exact number.
Q. You don't know how many were prepared -- you don't recall that there was a preceding CD-ROM and two media CD-ROMs?
A. I believe there was a preceding CD-ROM.
Q. And at some point you believe that you were given a CD-ROM at the conference?
A. Yes.
Q. Just one CD-ROM?
A. That I don't remember.
Q. The CD-ROM that you were shown by Google's lawyers, that was not a CD-ROM that you personally can say came from your records?
A. I'm sorry?
Q. The CD-ROM that Google's lawyers showed you, that was not a CD-ROM that came from your own personal records?
A. I do not believe so.
Q. In fact, you had no idea where Google's lawyers obtained that CD-ROM from?
A. No.
Q. Now, the one thing that we do know about the CD-ROM that you were given in Siggraph 1995 is that you don't recall if there was any information about ACI TerraVision on that CD-ROM?
A. You mean Siggraph 95?
Q. Siggraph 95.
A. Can you repeat the question?
Q. Whatever you received at Siggraph '95, you do not recall seeing a CD-ROM with any information about ACI TerraVision?
A. I do recall seeing a CD-ROM.
Q. All right. I am going to hand you a copy of your deposition transcript from this case, and I would like to direct your attention to page 177, lines 19 through 25.

MR. ALMELING: Your Honor, this is being displayed to the jury, and the witness has not had an opportunity to review the transcript.

THE COURT: Give the witness some time to review it. Do you have copies of this for the rest of us?

MR. SPEARS: I don't seem to have copies of this.

THE COURT: Before you question the witness about it, I would like to see it, please.

MR. SPEARS: Okay.

THE COURT: Let him look at it first.

MR. SPEARS: Understood.

Permission to approach.

THE COURT: Yes.

Okay. Does Google have copies of
this?

MR. ALMELING: We do not, Your

Honor.

THE COURT: They're going to need copies of it.

MR. SPEARS: Can we put it up on
the screen?

THE COURT: Yes.

MR. SPEARS: Okay.

BY MR. SPEARS:
Q. So you were asked at line 19, do you recall if there was information about Art+Com's T-Vision or about Art+Com on that CD-ROM? What was your answer?
A. I responded, "That I do not remember."

At the time of when I took this deposition.

MR. SPEARS: Pass the witness.

REDIRECT EXAMINATION

BY MR. ALMELING:
Q. A question about Magic 1994 .

Counsel showed you a deposition that you gave in 2006 about whether you were in attendance and you answered the question today, so let me ask it simply. Were you in attendance at Magic 1994
in Lawrence, Kansas?
A. Yes, I was.
Q. How do you know that for sure?
A. Because subsequent to the 2006 deposition, I actually have used Quicken, which is a financial piece of software. I have been recording my credit card and bank transactions all the way back to 1989. So since 2006 to today, I went back to 1994, August of 1994 and I saw the credit card transactions for a hotel in Lawrence, Kansas, a hotel in Kansas City, and also a rent-a-car in Kansas and also for entries for restaurants in that area.
Q. And what do those receipts and entries suggest to you?
A. That I actually was at Magic 94.

MR. ALMELING: No further
questions, Your Honor.

THE COURT: So if there are no
further questions, we'll see if the jury has any questions for this witness.
(Side-bar discussion:)

THE COURT: The question is who
did you speak with from Art+Com at Siggraph 95?

MR. SPEARS: That's fine.
MR. ALMELING: Likewise.
(End of side-bar.)
THE COURT: Mr. Lau, one of the jurors has a question which I'm going to ask you.

Who did you speak with from Art+Com at Siggraph 95?

THE WITNESS: I spoke with -- I
don't remember all their names, but there was at least three of them that were there at Art+Com -- I mean at Siggraph 95.

THE COURT: Do you remember the names?

THE WITNESS: No, I do not.
THE COURT: Thank you. Any
further questions?
Thank you, Mr. Lau. You're excused.

MR. ALMELING: Your Honor, we would like to move in several exhibits. DTX 1023, DTX 1037. DTX 1087. DTX 1088. DTX 1193. And DTX 1036.

MR. SPEARS: No objection.

THE COURT: Without objection, these exhibits are admitted.

MR. SNYDER: Defendant Google calls as its next witness Dr. Michael Goodchild. Dr. Goodchild is an expert in the field of geographic information systems with more than forty years of experience. He's going to testify to his opinion that Google Earth does not infringe the '550 patent and that the patent is invalid.

> Mr. Williamson will question

Dr. Goodchild.
THE CLERK: Please state and spell your full name for the record.

THE WITNESS: Michael Frank
Goodchild, $\mathrm{M}-\mathrm{I}-\mathrm{C}-\mathrm{H}-\mathrm{A}-\mathrm{E}-\mathrm{L}, \mathrm{F}-\mathrm{R}-\mathrm{A}-\mathrm{N}-\mathrm{K}$, G-O-O-D-C-H-I-L-D.

MICHAEL FRANK GOODCHILD, PH.D., the deponent herein, having first been duly sworn on oath, was examined and testified as follows:

MR. WILLIAMSON: May I proceed,
Your Honor?

THE COURT: Yes.
DIRECT EXAMINATION
BY MR. WILLIAMSON:
Q. Good afternoon, Dr. Goodchild.

You and I know each other, but for the benefit of the jury, I'm Brett Williamson and I'm one of the attorneys here for Google in the case defending it against the allegations by ACI.

Dr. Goodchild, could you please introduce yourself to the jury?
A. Good afternoon. I'm Dr. Michael Goodchild.
Q. Dr. Goodchild, what do you do for a living?
A. I retired in 2012 from the University of California Santa Barbara where I was a professor of geography.
Q. Do you continue to hold academic appointment?
A. I do. I'm a Emeritus Professor at UC Santa Barbara. I'm also an affiliate professor at the University of Washington. Both of those are honorary and unpaid positions.
Q. Dr. Goodchild, did you assist in
preparing a slide of some of your academic and educational background?
A. I did.
Q. And Mr. Ang, why don't we put up the first slide.

Dr. Goodchild, at the top of this slide it list your position as Professor of Geography at UC Santa Barbara. You began teaching there in 1989?
A. Yes.
Q. What positions or appointments at UC Santa Barbara did you hold?
A. Professor of Geography. I was also director of various research centers from time to time.
Q. And you were the director of the Center for Spatially Integrated Social Science; is that correct?
A. Yes.
Q. Have you held any other teaching positions before UC Santa Barbara?
A. Yes. For twenty years before that I was a professor at the University of Western ontario.
Q. Can you describe for the jury your personal educational background?
A. I have a BA in physics from Cambridge University 1965. And then a Ph.D. in geography from McMaster University in Canada in 1969.
Q. In what particular field have you focused your research and teaching activities since you began professionally?
A. For over forty years my focus has been on geographic information systems.
Q. Is that field sometimes referred to as GIS?
A. Yes.
Q. Have you published any books or papers in the GIS field?
A. I have published something over 550 papers, and something over fifteen books on the topic.
Q. I'm holding up a very heavy two-volume treatise titled Geographical Information System. Is this one of your books, these two volumes?
A. Yes.
Q. How is that volume used in the field?
A. It was published in 1991. It has about 800,000 words. It was published as a state of the art review of GIS at that time.
Q. Have you received any honors for the work you have done in the GIS field?
A. Yes. In the US I have been elected to the National Academy of Sciences and the American Academy of Arts and Sciences. In Canada I have been elected to the Royal Society of Canada. In the UK I have been elected to the Royal Society. I have also received a gold medal from the World Geographical Society. And in France I received the Prix Vautrin Lud, which is in some people's view the equivalent of the Nobel Prize in geography.
Q. Have you taught any courses in the area of geographical information systems?
A. Yes. My teaching since the early '70s has been in this field.
Q. As part of your work on the faculty of these institutions, did you also do independent research?
A. Yes.
Q. And have you worked on any research projects that involved the use of digital imaging in connection with the display of geographical information?
A. Yes. That really is what my research has all been about from the early 1970 's.
Q. So let's go to the next slide. And I'm going to direct you, Dr. Goodchild, to what's been marked as DTX 1198. Do you recognize the title of this paper on the slide that's being displayed?
A. Yes, I do.
Q. And what is this paper?
A. This is a paper published in April '91, and it describes some work that my lab was doing in 1990, 1991. And we were very excited at that time by the emergence of some 3D capabilities in workstations.

You have heard a lot about Silicon

Graphics at this trial. We were actually
working with an $I B M$ machine which had many of the same characteristics and we were interested
in developing the ability to place a globe on the screen and allow the user to spin the globe and zoom in to finer resolution.
Q. I want to proceed now to the opinions that you have developed based upon the work you have done in the case.

First of all, what subjects will
you be testifying about today? Have you prepared a slide to summarize those?
A. Yes. So essentially two sets of opinions. The first set having to do with infringement and the question of whether Google Earth infringes the '550 patent. And the question of whether the '550 patent is invalid.
Q. And I'm going to get into the details of your opinions, of course, this afternoon. But just so the jury understands what you'll be talking about, have you reached an opinion as to whether Google Earth infringes the '550 patent?
A. Yes, I have. My conclusion is that it does not.
Q. Have you reached an opinion based on your work in the case as to whether or not
the '550 patent is invalid?
A. Yes.
Q. What's that conclusion?
A. It is invalid.
Q. In doing your work to form your opinions that you're going to talk about this afternoon, can you tell the jury generally the source of information that you reviewed?
A. We can start with the 550 patent itself and it precursors. It was the third issue of essentially the same patent. And also the file history which is the documentation that the patent office maintains on its decisions in the case.

I have also reviewed a large amount of published material dating from the date of application of the patent. And I have consulted the source code of Google Earth and also had conversations with Google's engineers. I've also considered the testimony given in various depositions and at this trial.
Q. Have you reviewed Dr. Castleman's reports that he prepared in connection with the opinions that he presented at trial yesterday?
A. Yes, I have reviewed the various reports and I also of course heard Dr. Castleman's testimony.
Q. It's a good time to ask you, have you been here in Court since the beginning of the trial to listen to the testimony of the witnesses?
A. Yes, I have.
Q. Including Dr. Castleman's examination?
A. Yes.
Q. And did you also review some of the Court's decisions relating to, for instance, the interpretation or construction of some of the claim terms?
A. Yes. There are some very
important additions by the court as to what various terms in the claims mean, in the claims of the '550 patent.
Q. Did you use those claim constructions in developing your opinions?
A. Yes.
Q. I'm going to show you what's been marked as PTX 4. And I believe it's on the next
slide. You mentioned having reviewed the file history. Is this the first page of the file history of the '550 patent?
A. Yes, it is.
Q. Did you rely on your review of the file history of the '550 patent in reaching your opinions that you're presenting today?
A. Yes, it was one of the many sources of information.
Q. Dr. Goodchild, have you ever used Google Earth?
A. Yes, I have.
Q. When was the first time you did that?
A. I first encountered it in the form of Earth Viewer, the precursor, that if I remember correctly was in very early 2002. I was very excited by it. I immediately purchased a copy. And I began using it in my teaching and making presentations, and in my research.
Q. Have you again reviewed the Google Earth product in connection with developing the opinions that you're presenting to the jury today?
A. Yes.
Q. About how many hours have you spent on your investigation that led to you presenting the opinions today?
A. Until the end of April I had spent 215 hours.
Q. Are you being compensated for the work that you've done in this case?
A. Yes, I am. Google is being billed $\$ 500$ an hour for my time. There is a referral agency involved which takes a hundred dollars, so I receive 400 .
Q. Does the compensation agreement that you have depend in any way on the outcome of this case?
A. No, not in any way.
Q. Doctor Goodchild, you've talked about GIS. What specific technologies within the GIS field do you believe are relevant to your opinion about the '550 Patent and whether or not it relates to the Google Earth product?
A. Well, there are a number of technologies. There's, as you've heard many times, the technology of the quadtree. There's
the technology of remote access to data bases. So there are numerous technologies, including the technologies of computer graphics which determine how the images are actually displayed on the computer screen.
Q. With regard to this idea of how these images are displayed to the computer screen, have you prepared an initial demonstration to explain to the jury this general field?
A. Yes, I have.
Q. Can we go to the next slide. Can you explain your demonstration for the jury, Doctor Goodchild?
A. So inevitably some of what I'm going to show you you've seen before, so I hope you will excuse that. So we're looking at the part of the northeastern United States, including all of Delaware, all of New Jersey, part of the Atlantic Ocean, part of Lake Erie. And let's suppose our interest is in Wilmington, but if we were to bring a magnifying glass to that image we would see something very blurry and you might recognize the Delaware River, but
not much else.
Q. Before the time of the '550

Patent, were there ways to adjust the image resolution to match the user's desire to have a finer viewpoint of the image?
A. Oh, yes. And this idea of going to finer resolution dates way back in the history of GIS.
Q. Let's go to the next slide. And I'm going to ask you to refer to what we've marked as DTX-1076. I believe it's in evidence. And this is a patent from 1987. Do you recognize this exhibit?
A. Yes.
Q. And have you reviewed it as part of your work in this case?
A. Yes.
Q. And September 25 th, 1987 is the year this patent was filed. Did you review the various disclosures and information in this patent as part of your opinion?
A. I did.
Q. Let me direct you to Page 6 of Exhibit 1076. What does this part of the patent
explain?
A. So this part of the patent illustrates the concept of, as you've heard many times, the quadtree. And this Figure 11A, which comes from the patent, shows an initially course image over a large area being subdivided first into four sections and then subdivided again into four more sections and then again into four. So that if we had carried out that subdivision over the entire square area, we would have 64 subdivisions at our finest level of resolution.
Q. How would this subdividing process that you described from this global mapping patent apply to the image that you showed in your earlier demonstration?
A. So let's put it on top of that image. And we can now, if we superimpose the quadtree and we've arranged it so that one of those 64 smaller sections lies exactly on Wilmington, and if we now look at the finer resolution data which is available for that smaller section, there's the original magnifying glass, if you like, and the lower image shows
the much finer resolution. And now you can clearly see the Delaware River, you can see the Christina River, you can see Brandywine Creek, you can see downtown Wilmington.
Q. Let me move now to the '550

Patent. And you've reviewed the '550 Patent, I take it, in detail as part of your opinion?
A. Yes, I have.
Q. On this slide it's Claim 1 of the '550 Patent and can you generally describe for the jury's benefit your understanding of what Claim 1 talks about?
A. Yeah, it's about creating a pictorial representation of space-related data, which essentially means geographic information of a selectable object, in this case the earth, and this pictorial representation will present a field of view of the object by an observer and in this case, in this two figures, Figure 9 and Figure 11 from the patent, you can see the earth as it would be seen from space. So what we're trying to do essentially is simulate how the earth looks from space.
Q. Is that process then described in
these various steps?
A. Yes, those are the six steps of the '550 Patent, sorry, seven steps of the '550 Patent that describe exactly how this is done.
Q. If we turn to the first step, Step A, what is that explaining?
A. So this is the principle of the distributed data sources and so in my illustration here I've taken Figure 1 from the patent and I've put three servers on it and also the user's workstation in the bottom right. And what the user is going to do is request data from that plurality of spatially distributed servers.
Q. Did the Court issue any constructions of claims that relate to Step A that you used in your opinions?
A. Yes, it did. Here are the two constructions that the Court issued.
Q. I won't ask you to read those, but you considered those in your opinion?
A. Yes.
Q. Let's move onto Step B. What is Step B talking about?
A. So Step B says that you first determine the field of view from the imagined user's position, the virtual camera, then Step C says you request data for that field of view. Those are the red arrows going out to the servers. Step D says the servers provide data which is now centrally stored that relates to the field of view and then finally you represent the data on the screen in Step E.
Q. And did the Court construe any terms that relate to Steps B through E that you relied on?
A. Yes. So here are two constructions by the Court of the specific meaning of two of those claims.
Q. And then turning to Steps F and G. I know the jury has heard a little bit of testimony about those during the course of the trial. What do Steps F and G talk about in the '550 Patent?
A. So Step F describes how we do this process of course-defined zoom. And it begins by dividing the area into these subsections, in this case into four, then requesting high
resolution data for each of the smaller
sections, then storing the high resolution data and then representing the data in a pictorial representation. So there's four substeps of Step F.
Q. Now, in your opinion, does the global mapping patent that we saw earlier in 1997 describe one of the ways to do this dividing process?
A. Yes.
Q. Did the Court issue any
construction is on claim terms F and G that you've considered in your opinion?
A. Yes. Here they are. So the Court construed the term image resolution and also the longer section that you see there.
Q. Now, you've discussed Claim 1. And do you understand in developing your opinion that ACI is asserting at this trial three additional dependent claims of the '550 Patent?
A. Yes.
Q. And those are claims 3, 14 and 28.

Have you reviewed those claims as well?
A. Yes.
Q. Okay. And in forming your
opinions, did you consider the Court's construction of terms in those dependent claims?
A. Yes.
Q. Now, let's go to the next slide and remind the jury of the opinions we're going to move to. I want to first ask you about the first of your two, I think you described them as sets of opinions, and that is that Google Earth does not infringe, that Earth uses a fundamentally different method than the '550 Patent. What Google Earth products did you consider in reaching that opinion?
A. Well, I think for the purposes of this trial we've already seen that the Google Earth products can be grouped into three categories, and I followed that suggestion in this work.
Q. And have you listed them in a slide?
A. Yes. You'll notice the order is a little different here. So what I've called 1, 2 and 3, I think that Doctor Castleman called 2, 1 and 3 , but this order here is to me a little
more convenient because it's essentially
chronological. So Group I was developed first, then Group II and then Group III.
Q. What types of evidence relating to these Google Earth products and the way that they work did you consider in reaching your opinion?
A. As I said before, I examined the source code, I talked with Google engineers to confirm my interpretation of the source code and gathered other information and I also reviewed various documents that Google has published from time to time about Google Earth.
Q. Why is source code relevant to your opinion regarding non-infringement?
A. Because source code essentially defines what the computer does. It's the set of instructions to the computer, and so it's the ultimate authority on what the computer is actually doing.
Q. Did you also review Doctor Castleman's opinion regarding how Google Earth works?
A. Yes, I did.
Q. Are there parts of Doctor

Castleman's opinion that you disagree with?
A. Yes.
Q. So let's turn back to the global mapping patent we looked at before, and it's use of quadtrees and subdivisions here. Does Google Earth use the concept of a tree or a quadtree in its product?
A. Yes, it does.
Q. Do you have a demonstration of how this use of quadtrees and subdivisions would work in the Earth product?
A. Yes, I do.
Q. So what are we seeing here on the left-hand side of this next slide?
A. So what we're seeing on the left here is a tree. At the top, the A level is the courses image and then as we move down the tree to the B level, the C level, the D level, the pieces of the tree are smaller but they get more refined, they get more detailed. And you've heard these images talked about in several ways. You can talk about them as the nodes in the tree or we can talk about them as tiles, because
essentially they form a mosaic which covers the area.
Q. Now, when one uses the Google Earth product, are all these tiles or images actually placed onto the user's computer or cell phone?
A. No. And this of course is one of the big problems here. One of the big challenges is that there isn't room on the user's computer or cell phone and so we store them in the Keyhole server and access them as needed and as appropriate.
Q. So if a person who decides to use Google Earth wants to see a particular image, how does the computer or the cell phone decide which image to request from the Keyhole server?
A. So this is a little bit like a menu at a restaurant, because with a menu what you have is a description of the food items, you don't actually have the food items. And what we have here in the metadata tree is a description of what each element of the metadata tree might give you. We don't actually get the data until we need to. So this is all about delaying
requesting the data until we are reasonably sure what data we need, just as in a restaurant, you delay getting the food until you know what you want from the menu.
Q. I'm sorry, what information about an image is described in this metadata or in these items in the menu?
A. There are quite a few items, but there are two really that are relevant here. One is the resolution of each of those elements in a metadata tree and as we go down the tree the resolution gets higher and higher. And then the second is the area covered or in other words the viewpoint of that tile in the metadata tree.
Q. How did the Google Earth products use this metadata tree to display images at the level of detail that the user wants?
A. So Google Earth uses this process of traversal where we start with a root node and work through the tree, examining the metadata to decide which of the tiles in the metadata tree we're going to request from the server.
Q. Did you review Google documents that the company uses in its business to help
confirm that Google Earth uses a metadata tree?
A. Yes, I did.
Q. Let's move on to the next slide.

It's a page from PTX-0075, which is in evidence.
Is this one of the documents that describe
Google Earth's use of metadata trees?
A. Yes.
Q. That Google keeps in its files?
A. Yes. You can see the relevant terms here. You can see the term traverse, this is how Google traverses a metadata tree. You can see the term metadata and the distinction between metadata, the menu, and node data, the food items. And you can also see that for the purposes of convenience, that diagram uses a binary split into two instead of a split into four. It makes it simply easier to see.
Q. And will you be using that same binary tree for some of your demonstrations?
A. Yes, I will.
Q. Did you confirm that traversal of a metadata tree is the method used in all versions of Google Earth that you reviewed?
A. Yes, I did.
Q. So let me turn now to your
non-infringement positions and we'll go here first. And first, as a general matter, Doctor Goodchild, what is your understanding of the requirements of infringement, that is at a high level, about the performance of the element of a claim?
A. So at a high level, the law establishes that in order to infringe it's necessary that the offending products follow each and every step of the claim.
Q. And you've listed two reasons why in your opinion Google Earth does not perform every step of Claim 1 of the '550 Patent; is that correct?
A. Yes.
Q. Okay. What is the first reason?
A. This focuses on Step F and the problem here is that Google Earth does not, as required by the '550 Patent, does not request or display each of the smaller sections after the division step.
Q. What's the second reason?
A. And the second refers to step G
and Google Earth does not repeat Step F as required by Step G.
Q. So on this slide in your
testimony, you're right now just talking about
Claim 1. In your opinion, does Google Earth infringe any of these dependent claims, 3, 14 or 28?
A. Each of the dependent claims of course depends on Claim 1, and so if Google Earth does not infringe Claim 1, it automatically does not infringe the dependent claims.
Q. So Doctor Goodchild, for the first reason that you have concluded Google Earth does not infringe, what do you mean by Google Earth does not request, store and represent each of the smaller sections?
A. So in executing Step F we first divide. And that's this idea with the quadtree of dividing a larger section into its children, into its four children and then Step F requires that the requesting substep go to each of the smaller sections. So each of the smaller sections must be requested. Each of the smaller
sections must be stored and represented in the pictorial representation.
Q. Have you helped prepare an animation to illustrate how this requirement of each of the smaller sections works under the ' 550 Patent?
A. I have.
Q. Can you tell us what happens in this animation?
A. And of course the point here is that what I'm going to demonstrate is how different the '550 requirements are from the way Google Earth operates. So we're going to look at how the ' 550 Patent would operate and here is the root node A1 and we begin by deciding that it is not a sufficient resolution, we don't think it's a good enough image to display, the user wants something more detailed and so we begin Step F by dividing. And those red arrows denote dividing into B1 and B2.
Q. And what happens next in the '550 Patent?
A. Then Step F requires us to move to the next step, which is requesting higher
resolution spatially related data for each of those smaller sections, so B1 and B2 must be requested, they must be stored centrally and then represented.
Q. And just so we're clear, because I know you have a couple of other animations similar, you describe the red arrows as in your demonstration depicting the dividing step; is that correct?
A. Yes.
Q. And then we saw the nodes where tiles B1 and B2, they were empty and then surrounded by yellow and what does that refer to?
A. That refers to the requesting of the contents of that tile in the metadata.
Q. And then when they turn orange, what did that refer to?
A. That referred to the fact that the data for Bl , the actual image data has now been retrieved back at the user's computer and is now being represented on the screen.
Q. And then what happens in Step G?
A. So Step G then says well,
depending on two conditions, if you still don't have good enough resolution and if there's a better resolution available, in other words there's layers below this in the tree, then you repeat Step F. So let's repeat Step F with respect to $B 1$, we divide $B 1$, we request data for C1 and C2, we wait for that data to come back to the user's computer, we then store it locally and then we represent it.
Q. What happens under the '550 Patent if the C1 and C2 smaller sections aren't at a sufficient level of detail?
A. Then we repeat again. And so let's divide C1 into D1 and D2, request, store and represent and then go perhaps to C2, divide, request, store and represent and so on.
Q. Now, what happens if $D 1$ and $D 2$ are at a sufficient level of detail at least according to the operation of the '550 Patent?
A. Then G says we now have the best data available for $D 1$ and $D 2$, but we don't yet have the best data available for C1 so we go back and repeat -- I'm sorry, for C2. Go back and repeat for $C 2$ and that gives us D3 and D4
and so on until we've completed the entire tree.
Q. Now, you explained how the process worked for the B1 parent node to its C1 and C2 parent nodes and the C1 parent node to its D1 and D2 parent nodes, correct?
A. Yes.
Q. Does the '550 Patent require that that process wait until its done at the same level on the other side of the tree?
A. Not necessarily. Depends on the ending condition there. So we might have run of good enough data as we went do you know another branch of the tree.
Q. Now, have you prepared a similar animation that shows how the operation of the '550 Patent's method would look if we were actually operating this with a computer screen?
A. Yes.
Q. And can you take us through this demonstration as it depicts each of the smaller sections requirement of Claim 1 of the '550 Patent?
A. So here's A1 on the screen. It's not very -- A 1. /S grainy, so let's /TKEUFPD
it, execute Step F, divide, request, store and represent. And so both halves of the screen now have better resolution. But that's not good enough, so we go to B1, divide it again, request, store and represent and now the two quarters corresponding to $C 1$ and $C 2$ have gotten better, but that's still not good enough, so we do the same --
A. So we do the same, we repeat for C1 to get D1 and D2, and we get now better resolution. And eventually when we finish the whole process, we will have the desired resolution for the entire screen.
Q. Based on your investigation, is it your view that Google Earth, or whether or not Google Earth requests each of the image sections within the field of view as set forth in the '550 patent, step F?
A. No, the process used by Google Earth is very different.
Q. Have you reviewed and assisted in preparing an animation that describes how Google's method works?
A. Yes, I have.
Q. The jury earlier heard from one of the engineer product managers from Google, Peter Birch. Were you in the courtroom at the time?
A. I was.
Q. Is this a similar demonstration to the one Mr. Birch used?
A. It is. Essentially he was making the same point. He was describing how Google Earth works. My purpose here is to compare how Google Earth works to the '550 patent.
Q. Did you confirm that it depicted the operation of the Google Earth products as you understood it based on your review of the various documents and source code?
A. Yes, all three groupings of the Google Earth products.
Q. And did you do some additional material in this animation other than what we saw from Mr. Birch?
A. I don't think so.
Q. What does -- well, why don't you just take us through the process, your understanding having done the investigation to review the Google process how it works?
A. Just to remind the jury, so we first begin traversing the metadata tree. And that if you remember was the set of blue arrows. And every tile or node that we visit gets put into a list.

So we are dividing, but we're not requesting and storing and representing anything at this stage. We traverse the entire metadata tree and Mr. Birch talked about the importance of speed and doing that and how quickly that can be done.
Q. Somehow it started over again. Let's stop the demonstration there. There has been a number of the nodes that have been outlined in blue. Is that the result of the traversal process?
A. Yes.
Q. So what happens after traversing?
A. Well, you'll notice that to this point nothing has been requested, nothing has been stored, nothing has been represented. We divided as step F requires, but we have not done the rest of step F. So the next step is to prioritize the list. And to do this on the
basis of the desirability of retrieving particular tiles from the server.
Q. Why does the Google Earth system prioritize this list after the traversal?
A. Because at this point we basically know what we want. We know we want D1 through D8 because those are the fine resolution data that are going to satisfy the user. So we put them first in the list and start retrieving them first.
Q. Which versions of Earth use a prioritization process?
A. All of them. Although there are differences between the criteria used.
Q. What happens next after the prioritization of the list?
A. So now it's finally the requesting can begin. So if you'll remember this is still part of step F in the patent. And so D1 through D8 have been requested, B1 has been requested. But as Mr. Birch described this morning, we've also ended up with B1. And this is in part a quirk of the internet that it's not all that predictable. And in part it's because Mr. Birch
referred to various actors I think he called them, which go out and retrieve data and it's entirely possible that they will retrieve data out of sequence.
Q. Based upon your review of the source code, did you agree with Mr. Birch's description of the way that the parallel processes worked to have people go out, I think he used an analogy of several people at the supermarket getting different things?
A. Yes.
Q. What happens next in the Google Earth product?
A. So far we have requested, you can see now the various tiles are starting to show up back at the user's computer, we have got D1, we have stored it and represented it, and if we allow this process to continue, essentially we will eventually end up with all of the D titles and we'll end up with the image we want.
Q. Now, some of these tiles are showing based upon your description as not having data requested and, therefore, there is no image data on the tree. Is that the
conclusion that you reached about Google Earth not requesting storing representing each of the smaller sections?
A. Yes.
Q. And how would you display or how would you explain why in this process say, for instance, C3 and C4 never had data even requested?
A. Because with this process, which began with traversal, we have been smart enough to identify the ones we really want. And not have to retrieve all of the intermediate ones, so we have been able to skip certain nodes or tiles.

A key issue here is that remember that in this demonstration, I'm just showing a binary split instead off a four-way split and I'm only showing three levels or four levels in the tree. And you heard this morning that the number of levels in the tree can be as many as twenty-five.

So what that means is the proportion of tiles that are skipped will be much higher in reality than it is in this very
simple demonstration.
Q. So to use the demonstration, if we had the entire tree in the actual system, there would be a lot more red Xs ; is that correct?
A. Yes.
Q. If, Dr. Goodchild, you were to redraw this tree to only show the images that actually were requested, stored and represented, what would that look like?
A. So it might look something like this, where dashed lines are indicating that there are intermediate nodes between, for example, A1 and D5 which have been skipped.
Q. I'm going to ask you now about some of the confidential source codes we talked about at length yesterday. Do you have an example of source code for one group of the accused products that executes this prioritization process that leads out or skips some of the nodes?
A. Yeah. And let me say that in my report I've gone into detail on each of the product sets and have a great deal of detail on the source code.

But here I have outlined a particular comment in lod-manager.js which is one of the files of software that Dr. Castleman analyzed.

And you can see here if the node meets the threshold, or is a leaf, in other words, it's at the bottom of the tree, then request it normally since we want to show it as quickly as possible.

In other words, the purpose of the prioritization is to get the nodes we most want as quickly as possible.
Q. Have you reviewed other software as well as part of your review of the Google Earth product?
A. Yes.
Q. Dr. Goodchild, what was your conclusion in comparing your investigation relating to the '550 patent with the performance of Google Earth as it relates to step F of claim 1?
A. That Google Earth skips some of the smaller sections. It does not as the '550 patent requires request, store and represent
data for each of the smaller sections after every step.
Q. Let's go to the next slide. Are these the source code file names that you reviewed for purposes of your opinion as to the operation of the Google Earth products as they relate to step F?
A. Yes. These are a very small selection of all of the files of source code, but together with Google engineers I was able to narrow it down to the ones that were really critical in understanding this process. These are the three groupings for the three sets of the accused products.
Q. So our record is clear, these are exhibit numbers DTX 1178, 1179, 1180, 1184, 1186, 1185, 1187 and 1176?
A. Yes.
Q. And the last one at the bottom, the lod-manager, that's the file that we looked at the excerpt from before?
A. Yes.
Q. Based on these differences that you've explained to the jury, what have you
concluded?
A. That Google Earth does not request or represent each of the smaller sections and, therefore, it does not infringe claim 1, step F.
Q. And to recap, can you kind of put this into maybe some general language along the lines that you used before when you were giving the example of how the Google Earth process works in comparison to the '550 patent?
A. Yes. It's simply a very different process. And it uses a process which is guaranteed to be more efficient to produce what the user wants more rapidly. The user does not have to wait as long for all the data to be retrieved as it would under the '550 patent.
Q. Let's go to the second of your two reasons for why the Google Earth products do not perform every step of claim 1. The second is Google Earth does not repeat step F as required by step G. Can you explain based on the claim language what you mean by that?
A. So what the claim language says is that after you guide you must request, store and represent each of the smaller sections. And
then, and only then can you go to step G. And under the conditions expressed in step G, if those conditions apply, go back and repeat step F.
Q. And have you prepared an animation to show how this repeating requirement works in terms of how the image data is divided, requested, stored and represented?
A. Yes.
Q. Can you explain to the jury in the demonstration as it relates to the operation of step G after step F?
A. Yes. So here is a one, we're starting again with a root node, we divide, we request and we store. So that's executed step F.

Now we go to step G and ask have we reached the desired resolution. It's no. Have we exhausted the higher resolution imagery. No. So step G requires us to repeat step F.
Q. If we show that next, what's happening now?
A. Here is step F being repeated by dividing B1 into the two sections C1, C2,
requesting, storing and representing those two sections.
Q. Under the '550 patent, can you divide B1 into C1 and C2 before B1 is represented?
A. No.
Q. Now, what about lower levels of the tree in the smaller sections, does the same rule apply as you apply step G to step F ?
A. The same rule applies, we execute step F and step G again, on $C 1$, execute again on C2, execute again on B2, execute it again on $C 3$, execute it again on C4.
Q. And is that same repeating process done in each element of the tree?
A. Yes.
Q. How does step F and step G, or I should say step G's repeating process that relates to step F affect what's represented on the user's screen?
A. So it's essentially what I showed before, that as we work down the tree, we see the process of division, retrieval and representation, and we see that repeated as
often as necessary to get all the way to the ideal image.
Q. Based on the analysis you have done, does Google Earth perform the repeating step in section G of claim 1 of the 550 patent?
A. No, it does not.
Q. And can you demonstrate how Google Earth works instead as it relates to step G?
A. Yes. So we first traverse the tree and place items into the list. But there is no question here of repeating because the dividing does not lead to retrieving, storing and representing, and we can proceed to further divisions without executed all of step F.
Q. So if I stop this after the traversing, C1, I'll let it stop, C1 has been divided into D1 and D2 before data has been requested, stored or represented in C1; correct?
A. Correct.
Q. Is that the way that Google Earth process works?
A. Yes.
Q. So continuing the animation, what do we see next?
A. Then we see the prioritization, and then we see the step of requesting beginning. But this is completely out of sync with the dividing process that '550 requires.
Q. So based on the image, why don't we finish the process. And again, is this the same process that goes until the image at the requested level of detail is displayed?
A. Yes.
Q. So from the image that we see at the end of the animation, how is Google Earth different than the '550 patent's step G?
A. It simply does not repeat step F at the integration of step G.
Q. And do you have a slide that compares these processes side-by-side?
A. Yes.
Q. And why don't we run through this and you can tell the jury what we're seeing?
A. So the left we're seeing on the '550 patent animation as I've shown it before. On the right we're seeing the Google Earth animation. And one thing to notice about Google Earth process is that it operates in parallel.

There are things going on here at the same time and independently. And we'll talk about that a little bit more in a moment.
Q. Let me ask you about that now. The demonstration you showed
demonstrated that Google Earth had processes going on in parallel and independently. Is that something that you identified and confirmed from your review of the source code of Google Earth products?
A. Yes.
Q. Let me go on to the next file here. Are these the source code files that you reviewed in support of your opinion that the Google Earth products did not practice the repeating step G of claim 1 of the '550 patent?
A. Yes, they are.

MR. WILLIAMSON: For the record those are exhibit numbers DTX 1179, DTX 1183, PTX 0371, PTX 0372, PTX 376, PTX 377, PTX 380, and PTX 381.

And then for Android 8, DTX 1184 and DTX 1187. And for Globe, PTX 0387 and PTX 0395.

BY MR. WILLIAMSON:
Q. Based on the differences in processing order as you showed between steps F and G, what conclusions have you drawn?
A. That Google Earth does not repeat step F and step G.
Q. And do you have a conclusion that based upon the operation of the Google Earth products whether or not Google Earth infringes the claim 1 of the '550 patent?
A. Yes. The claim 1 requires these four substeps of step F to be executed before being repeated and that is simply not true of the Google Earth product.
Q. So it's your opinion that the Google Earth product does not infringe on that basis?
A. It is.
Q. Now, with respect to the Google image on the right, again, can you just sort of summarize the showing the absence of the repeating steps for the benefit of the jury?
A. Yes. The repeating step is initiated by division. So every time something
is divided, the '550 patent requires the four steps, the remaining three steps of step F to be executed. But that simply hasn't happened in the Google example.
Q. Let me go back then to somewhat where we started and ask you to summarize your opinions on noninfringement for the jury relating to both of your reasons.
A. So there are two reasons here. And essentially Google Earth does not perform every step of step F and step G. And, therefore, it does not infringe claim 1. And, therefore, it does not infringe any of the accused, any of the relevant -- the claims at this trial.
Q. And that would include not just claim 1, but in your opinion, claim 3, claim 14 and claim 28 for the same reason?
A. Yes.
Q. That is because those claims all include the steps of claim 1?
A. Yes.
Q. So let me move back to the second general topic that you've developed opinions on
and that is the invalidity of the 550 patent. Do you have a summary of your opinion in that regard?
A. Yes. The '550 patent is invalid. The patent's technology was known and the '550 patent in my opinion should not have been issued.
Q. If we go to the next slide. What are these two primary references that you list here? I am sure that the names will be familiar to the jury, but maybe you can remind the jury what you're relying on as the primary basis of your opinion for invalidity?
A. There is an important distinction here. On the left is SRI TerraVision which we already heard a lot about from Mr. Lau and others. And the primary reference there is a system, it's the TerraVision system.

On the right is another primary
reference, this is the T-Vision reference. And this is a publication. This is a primary reference in the form of a publication.
Q. And so to place your opinions on some testimony that we've already heard today
which I think is helpful to tie this together, is the primary reference number one, the TerraVision system, is that the system that was described by Mr. Lau when he was here in person in the courtroom?
A. Yes.
Q. And the primary reference number two which is this T-Vision publication, is that the paper that was on this $C D$ that was talked about by Mr. Rous on that video that we saw earlier today?
A. Yes.
Q. These names are very similar. We'll try to keep them apart as best we can. First I want to go into a little bit of the background of the GIS field because as I understand it, you reviewed the background technology as part of forming your opinions as to whether the patent is valid?
A. Yes.
Q. You earlier testified that you yourself have worked in the GIS field, that is visualizing geographic data, for forty years?
A. Yes.
Q. Let's go to the first slide. Can you give the jury a little bit of background about the history of the geographical information system field?
A. This gentleman here is Dr. Roger Tomlinson. And he's widely acknowledge to be the father of GIS, although other people might disagree. He in the mid 1960 persuaded the Canadian federal government to invest in the development of the world's first geographic information system. It was called the Canada Geographic Information System and it was built to handle the kind of data that you see on the right which was data about land use, areas of Canadian land that was being used.
Q. Did you personally work with Mr. Tomlinson?
A. Yes. I first met him in 1974 or '75. I got to know him very well. I became a member of his team which he called Tomlinson Associates. And we worked all over the world consulting with government agencies and corporations with GIS.
Q. The bottom figure it looks like at
least part of some computer machinery, I think we all know that things have changed over time. Were there particular problems that arose as the ability of computers and computer networks to be part of this process?
A. Yes. Several problems that became really critical problems in the history of GIS. One of them was the volume of data. As you have heard many times, the earth's surface is enormous. It's 500 million square kilometers. Representing that at a fine level of resolution creates a gigantic amount of information. This was one of the major issues. It was an early version of the big data problem that we're hearing about so much today.
Q. Let me direct your attention to exhibit number DTX-1079, which is an article by William Hibbard and David Santek. Are you familiar with that article?
A. Yes, I am.
Q. And did you review this article as part of the process you went through in developing your opinions in this case?
A. Yes.
Q. What did Mr. Hibbard and Mr. Santek come up with that related to the problem you described?
A. So this is a paper published in 1991 about work that was going on at University of Wisconsin-Madison and the problem they were looking at was the problem that existed for atmospheric science and many other fields where there is again a vast amount of data. And what they were arguing in this paper was that the solution to this problem could well be to remotely access databases over a high speed network and leave the data on those remote databases except when they were needed and at the time this was before the internet became so popular, but they talked about various high speed networks that were appearing at that time. And this is one of, in fact, several publications which appeared about that time pointing out the potential uses of high speed networks to solve this problem.
Q. So were these concepts that were published as a solution to this problem around 1991 actually utilized for later systems,
including the Google Earth system that we use today?
A. Oh, yes. It was a very rapid process of adoption because the advantages as a way to solve the problem were so obvious.
Q. So let's go to Slide 48 and turn now to that first of the primary references that you listed and that's the SRI TerraVision system. And the jury just a little while ago this afternoon heard in detail from Mr. Lau so I'm going to try not to repeat a lot of that testimony, but the first thing I want to ask you about whether you actually were aware of SRI's TerraVision system back in the early 1990's?
A. Yes, I was. I was well aware of the work going on at $S R I$ in this area.
Q. And so you knew that $S R I$ in the 1994 time frame was working on an earth visualization system?
A. Yes.
Q. Have you, for the purposes of this case, looked now very closely at the various parts of the SRI system such as those that Mr. Lau described in his testimony?
A. Yes, I have.
Q. So you're not relying on your memory of what you may have known about the SRI system in 1994, correct?
A. No.
Q. Now, I understand you're not a lawyer. That's one of the questions I think every witness has been asked in this trial. But have you been informed as to the patent law rules generally that you have used to apply the work you've done to reach your conclusions?
A. Yes, I have.
Q. And let me show the first of those. This is something called 35 U.S.C. 102, conditions of patentability. And what do you understand that to be?
A. So this is what we call the anticipation condition and it says that you should not be entitled to a patent if the invention that you're thinking about was already described in a printed publication in this or a foreign country or in public use or on sale more than one year prior to the date of application for the patent.
Q. And is this one of the rules that you considered in making your final opinions after having done your investigation?
A. Yes, it is.
Q. And then I'll show you a second one. This is 35 U.S.C. 103, conditions for patentability. And what do you understand the section 103 rule to be?
A. This is what's generally known as the obviousness condition and that says again, you cannot have a patent if the differences between the subject matter you want to patent and the existing prior art, in other words, public knowledge, would have been obvious to a person at the time of the invention to a person having what we term ordinary skill in the art. And I'll explain what that means.
Q. Why don't you do that now. What is meant, as you understand, of a person having ordinary skill in the art?
A. So this is a hypothetical person at the time of the invention, so here in mid-1995, and the parties in this case have agreed or they agreed early on in the case that
a reasonable description of such a person would be a person having a bachelor of science degree or its equivalent and three years of experience in research or development in computer graphics and/or digital image processing.
Q. And in your work in the geographical information systems field, did you have more than three years experience in computer graphics or digital image processing as of 1995?
A. Yes.
Q. How are you applying these three
legal bases with respect to the asserted claims in the prior art references?
A. By looking at the two references and so TerraVision and the T-Vision publication, and looking at all of the claims now, Claims 1, 3, 14 and 28 and applying the two criteria of anticipation or obviousness.
Q. And the first says SRI's TerraVision anticipates or renders obvious Claims 1, 3, 14 and 28. Is that your conclusion?
A. Yes.
Q. And the second says ACI's T-Vision publication anticipates or renders obvious Claims 1, 14 and 28. And then ACI's T-Vision paper, in view of the global mapping patent, renders obvious Claim 3. Is that your opinion?
A. Yes.
Q. And the global mapping patent, is that the same patent we saw at the very beginning of your testimony?
A. Right, the 1987 patent application.
Q. Do you understand that you need to establish that both SRI's TerraVision system and the ACI T-Vision publication have to either anticipate or invalidate the '550 Patent?
A. No. I understand that either of those primary references could invalidate the patent.
Q. So let's turn now to the first one, the SRI TerraVision system. And again, this is the system that Mr. Lau described in detail earlier this afternoon. What sources of evidence did you analyze that address what is described or disclosed in the TerraVision system
that Mr. Lau testified was on public display?
A. So I had access to the TerraVision video which we've seen in Mr. Lau's testimony. I had access to various publications from the SRI project at the time, 1994, '95. And I also had access to various reports of the Magic project which as you heard earlier was the overarching project of which TerraVision was a part.
Q. And do you understand the materials you reviewed to be the same ones that Mr. Lau testified described the operations of the TerraVision system that was on public display in 1994?
A. Yes.
Q. I'm sorry, the TerraVision system that was on public display in 1994?
A. Yes.
Q. As part of your work on this case, did you review the records at the patent office including that file history of the '550 Patent that we looked at earlier?
A. Right. Right. Because it's
important to know what information the patent
office had access to.
Q. Now, I think there's been testimony earlier today that the patent office had access to some of this information, but based on your review of that '550 Patent, did the patent office consider all of the information that you relied on and that Mr. Lau talked about?
A. No, it's my understanding that the patent office did not have access to the video and it's also -- well, of course they didn't have access to Stephen Lau's testimony today.
Q. Have you put together a timeline based on Mr. Lau's testimony and your review of the '550 Patent?
A. Yes.
Q. Okay. What's shown on your timeline here?
A. So here are the relevant events.

If we start from the right, we have the filing of the patent application for the '550 Patent in December of '96. We have a one-year grace period prior to that, specified in the law. And then we have the demonstration of TerraVision at

SIGGRAPH '95 which occurred in August of '95, several months before the beginning of that grace period. And then we have the even earlier demonstration in August of '94 of the TerraVision system.
Q. Did you apply your understanding of these dates to the legal rules that we looked at to reach your conclusions regarding invalidity of the '550 Patent?
A. Yes, I did.
Q. So let's look specifically at how the SRI system, the TerraVision system that Mr. Lau was talking about compares to the '550 Patent. And let's go to the next slide. What have you prepared for us here for purposes of describing to the jury your opinion regarding invalidity?
A. So my analysis essentially goes through each element of Claim 1 and each element of the cited claims and asks whether that claim is disclosed in the TerraVision system.
Q. So let's begin then with the first element, which is described as the preamble. That's the part that doesn't have a letter
denoting a specific step. In your opinion does SRI's TerraVision system disclose the preamble of the '550 Patent Claim $1 ?$
A. Yes. The preamble in the patent is pretty general. It talks about a pictorial representation of space related data of a selectable object and then I've highlighted from one of the TerraVision publications essentially equivalent statement that it's a system of visualizing terrain, allows the user to view in realtime a synthetic recreation of the landscape.
Q. And if we move to Step A, what, in your opinion, does SRI's TerraVision system disclose regarding Step A of the '550 Patent?
A. So the key thing here is this idea of a spatially distributed set of data sources. And as you heard in Mr. Lau's testimony, he talked about the image server system, which was just that, a set of spatially distributed data sources. And SRI -- as I've highlighted, the second and third highlights will point you directly to the equivalent language in the TerraVision publication.
Q. Is there an additional disclosure in the TerraVision publications that explains more graphically what's meant by this image server system, ISS?
A. Yes. So here is a, an image you've seen already, a diagram of the ISS system as it existed then identifying the locations of the servers, showing the network that connected them and this is the network of distributed, spatially distributed data sources that TerraVision is connected to.
Q. And those are the same servers that Mr. Lau was describing today, correct?
A. Yes.
Q. So if we then move forward -- I guess I should go back just to make sure, is it your opinion then that Claim 1 element of the '550 Patent is disclosed in the TerraVision system?
A. Yes, it is.
Q. Let's move onto Steps B and C. In your opinion, does SRI's TerraVision system disclose Steps B and C of the '550 Patent?
A. So Steps B and C are about
determining a field of view and then requesting data for the field of view. And here's an extract from the TerraVision document, TerraVision basically using an incremental retrieval of the data base as required by the user. That's 1C. And he or she has seen it from just the right point of view is essentially 1B.
Q. In your opinion this disclosure of the TerraVision system itself discloses the subject matter of claim elements B and C ?
A. Yes.
Q. Is there additional evidence that you looked at in support of your opinion that claim element B through E are all together disclosed in the prior art of the SRI TerraVision system?
A. Yes.
Q. And what does that include, is that a part of the video that Mr. Lau showed the jury?
A. Yes.
Q. Okay. So if we do this right technically, let's go to the next slide. And
we've broken this video up based upon your review; is that correct?
A. Yes, this is just a short element of the video that addresses directly those two claims.
(Video of Exhibit DTX-1088
played.)
BY MR. WILLIAMSON:
Q. Does that video excerpt further support your opinion that the SRI TerraVision system discloses the features of Steps B through E of Claim 1?
A. Yes, it does.
Q. Let's go to the next slide in our checklist then. And now we're talking about Steps F and G. Based on your analysis, Doctor Goodchild, does SRI's TerraVision system disclose these steps of the '550 Patent?
A. Yes, these are the steps that talk about of course dividing the sections into smaller sections, requesting and storing and representing and then repeating. And on the left is a figure from a TerraVision document which shows the quadtree and how the quadtree
allows you to successively divide and request. And on the right-hand side is the equivalent diagram from the '550 Patent. And you can see in both cases there's a reference to a quadtree in the caption of the figure.
Q. Were there any other --

THE COURT: I'm a little concerned
that the record is not going to reflect in some cases which document he's referring to unless you identify the document for the record.

MS. WILLIAMSON: Thank you, Your
Honor. That's helpful.
BY MR. WILLIAMSON:
Q. When you said down on the left, when you said the TerraVision document, was that referring to the $S R I$ technical document 540, exhibit DTX-1023?
A. Yes.
Q. And you're referring to PTX-1, the '550 Patent?
A. Yes.

MS. WILLIAMSON: Thank you, Your
Honor, for that clarification.
BY MR. WILLIAMSON:
Q. Was there any other disclosures in the specific TerraVision documents that you relied on to support your conclusion that the TerraVision system disclosed Steps F and G of Claim 1?
A. Yes. Here's a couple of quotes. The second highlighted section there, our approach is to use a course defined search on the quadtree, and then below it, representing this until we found a portion of the terrain that was of interest, both of those are supporting this conclusion.
Q. And for the record you're referring this to a portion of DTX-1023?
A. Yes.
Q. Did anything in the SRI TerraVision video that was played and has been admitted support your opinion that the SRI TerraVision system disclosed the subject matter of Steps F and G ?
A. Yes, there's another clip I'd like to show. It's again a very brief clip.
(Video of Exhibit DTX-1088
played.)

BY MR. WILLIAMSON:
Q. And did that portion of the SRI TerraVision video support your conclusion that that TerraVision system disclosed claim element F and G of Claim 1?
A. Yes.
Q. So if we go to the next slide, based on your analysis of Claim 1's elements as they relate to the SRI TerraVision system, what have you concluded?
A. That based on this analysis,

TerraVision, the TerraVision system discloses each and every element of Claim 1.
Q. Now, let's move on to the other of the asserted claims and the next asserted claim in numerical order is dependent Claim 3. You've listed on the screen Claims 2 and 3 . Can you explain to the jury why that is?
A. Yeah, so Claim 3 depends on Claim 2. And so I've had to examine Claim 2 and Claim 2 also depends of course on Claim 1. So it's first necessary to look at Claim 2 and the important thing in Claim 2 is the ability to alter the location of the camera, in other words
to allow the user to move. And so that's something that is widely found in the relevant documentation and something that the video demonstrated that TerraVision could certainly do.
Q. Let me ask you specifically about that subject matter of Claim 2 that's incorporated in Claim 3. What specifically did you rely on regarding this SRI TerraVision system for the disclosure of that subject matter in Claim 2?
A. So here's a, a suitable quotation, this is from DTX-1023 again, SRI technical document number 540. And I've highlighted, underlined the words, allow a user to roam around the terrain, which is essentially what Claim 2 is about.
Q. So let's move then to the additional subject matter independent claim -let's stay on Claim 2. Is there additional disclosures in any of the SRI TerraVision documents that you relied on in reaching your opinion that the system disclosed the subject matter of Claim 2?
A. Sure. Here's a highlighted section from DTX-1087, which is a presentation made at the 1994 Magic symposium.
Q. And this talks about the ability to pan and zoom over the terrain imagery in 2D or fly or drive over the terrain in 3 D in the SRI TerraVision system?
A. Yes.
Q. Now, I want to bring you to Claim 3, Doctor Goodchild, my apologies. And again, this additional subject matter in dependent Claim 3, in your opinion does SRI's TerraVision system disclose this additional limitation in Claim 3?
A. Yes, Claim 3 is a very broad claim. It talks in general about changing the coordinates of the data for a new coordinate system. And we've heard testimony at various times during the trial about what that might mean in practice. Here is one quotation, this time from DTX 1037 where it talks about the transformation that's necessary as it is in any computer graphic system from the 3D coordinate to the 2 D coordinate system of the screen.

That's one. We also heard today in Mr. Lau's testimony about another kind of coordinate transformation.
Q. And what was it in Mr. Lau's testimony in trial and in the previous deposition that you reviewed that was another coordinate system that was in the TerraVision system?
A. It was this idea that's been referred to many times, we heard it in the sense of this shaking that you get when you zoom down to very fine resolution, because the coordinates, if you use global coordinates don't have sufficient precision and he talked directly about the solution that TerraVision used for that problem.
Q. With respect to the, the technical document, just for the record that you're relying on for disclosure in the TerraVision system of the additional subject matter of Claim 3, that's DTX-1037?
A. Yes.
Q. So let's move then to Claim 14?
A. And Claim 14 is about the use of a
quadtree or quadrant tree and here I've shown again the figure from DTX-1023 which shows a quadtree being divided first into four sections and then into 16 sections.
Q. So you're referring on the left side to a document relating to the SRI TerraVision system, correct?
A. Yes.
Q. And that's DTX-1023?
A. Yes.
Q. And what have you displayed on the right-hand side of the screen?
A. This is very much an equivalent figure from the '550 Patent. This is Figure 4 from PTX-OO1 and it shows the division of an image into four and then into 16 and then into 64. And going, down in fact, five levels in the quadtree.
Q. And then finally let's move to the fourth of the four asserted claims, Claim 28 relating to the -- representing the data with the polygonal grid model. In your opinion does the SRI TerraVision system disclose this additional subject matter in Claim 28?
A. Yes. Again I consider this to be a very broad claim. Here is one possible way in which TerraVision addresses this claim and that is to compose the image that's on the user screen as a mosaic of tiles. So in this case a set of square tiles have been knitted together to form the display on the screen.

But we also today heard in
Mr. Lau's testimony about how the TerraVision system used a triangular mesh, a mesh of three-sided polygons to represent terrain.
Q. And is that also supported by the video that we saw before?
A. Yes.
Q. DTX 1088?
A. Yes.
Q. Based upon your review and the analysis of the '550 patent, what have you concluded with respect to whether or not the SRI TerraVision system anticipates the claims of the -- the asserted claims of the '550 patent under Section 102 that we looked at?
A. I have concluded that in my opinion the TerraVision system anticipates the
asserted claims. But I also have allowed the differences are perceived between the asserted claims and the TerraVision system that those differences would have been obvious to one of ordinary skill in the art at the time. And so in effect, there is a combination of an anticipation case and an obviousness case. MR. WILLIAMSON: Your Honor, we're at a natural stopping point. I realize it's a few minutes after 5:00.

THE COURT: Thank you. We'll
recess for the evening and we'll resume tomorrow morning. And again, I remind the jury not to discuss the case or do any research. And we'll see you tomorrow morning at 8:45.

Have a nice night. Thank you.
(Jury leaving the courtroom at
5:03 p.m.)
THE COURT: Thank you. Sit down.
So as I mentioned, I don't think we're going to be able to post, because the clerk's office is closed, on the docket the suggested revised final jury instructions, but what we will do is we'll e-mail them to each side at six o'clock
and post them in the morning.
And then if you have the time to
get together and come up with a revised draft by the end of the day tomorrow, that would be
helpful. If you don't, I understand it's a lot of other things that both sides need to do. If you don't have to time to do that, we'll deal with suggested changes at the conference.

Anything else we need to deal with this evening?

MR. SPEARS: Just one issue because it's extremely fresh. And I need Dr. Goodchild out of the room when I raise it. THE COURT: Okay.

MR. SPEARS: My issue concerns the last minute of testimony that the Court heard. That is going to be the entire sum and substance of Dr. Goodchild's opinion on obviousness. The Court can immediately appreciate it that this is in no way, shape and form a competent opinion on obviousness.

THE COURT: How do you know that's all he's going to do?

MR. SPEARS: I know that's all
he's going to do.
THE COURT: Mr. Williamson.
MR. WILLIAMSON: Dr. Goodchild
isn't finished his testimony, Your Honor.
MR. SPEARS: All right.
THE COURT: Let's see what he does.

MR. SPEARS: Fair enough.
THE COURT: Okay. We'll see you at 8:30 tomorrow morning and we'll recess. Thank you.
(Court recessed at 5:05 p.m.)

Hawkins Reporting Service

State of Delaware)
New Castle County)

CERTIFICATE OF REPORTER

I, Dale C. Hawkins, Registered Merit
Reporter, Certified Shorthand Reporter, and Notary Public, do hereby certify that the foregoing record, Pages 767 to 1,153 inclusive, is a true and accurate transcript of my stenographic notes taken on May 25, 2016, in the above-captioned matter.

IN WITNESS WHEREOF, I have hereunto set my hand and seal this 25 th day of May 2016, at Wilmington.
\qquad
Dale C. Hawkins, RMR

\$10 [3]-808:4, 808:6,	1137:13, 1138:3,	1137:19, 1138:3,	1176 [1] - 1116:17	190 [2]-799:24,
809:9	1138:15, 1139:18,	1139:17, 1141:12,	1178 [1] - 1116:16	875:11
\$20 [2] - 805:13,	1139:23, 1141:18,	1143:5, 1144:5,	1179 [2]-1116:16,	1960s [1] - 1127:8
805:17	1142:3, 1142:20,	1144:13, 1144:21	1122:19	$1965{ }_{[1]}$ - 1081:4
\$226,167,748 [1] -	1148:14, 1149:18,	1's [1] - 1144:8	1180 [1] - 1116:16	1969 [1] - 1081:6
933:8	1149:21	1,153 [1] - 1153:10	1183 [1] - 1122:19	1970's [2] - 970:1,
\$400[4]-805:15,	'70s [2]-961:2,	1.1.4[1] - 1046:15	1184[2]-1116:16,	1083:8
805:17, 858:11,	1082:21	1.2[2] - 811:8, 811:12	1122:22	1974 [1] - 1127:18
1062:23	'75 [1] - 1127:19	$1.5[1]-809: 4$	1185 [1] - 1116:17	198 [3]-798:19,
\$450 [1] - 1063:1	'80s [1] - 961:2	1.7 [1]-797:17	1186[1] - 1116:17	798:24, 875:11
\$500 [1] - 1088:10	'90s [4] - 960:1, 961:1,	1.9 [1]-792:14	1187 [2]-1116:17,	1980 [1] - 1021:13
\$69 [1] - 804:21	1028:12, 1042:10	10 [14]-772:7, 776:7,	1122:23	1981 [3]-954:5,
\$700[2] - 878:17,	'91 [1] - 1083:17	808:12, 878:2,	1193 [2]-1042:19,	954:11, 964:20
880:1	'93 [1] - 1043:17	879:1, 879:19,	1077:23	1987[3]-1090:12,
\$710 [2]-879:5,	'94[8] - 1052:10,	879:22, 880:16,	1198 [1] - 1083:11	1090:18, 1134:10
879:20	1058:11, 1058:13,	886:7, 886:11,	11:01 [1] - 874:23	1989 [2] - 1076:8,
'05 [1] - 811:13	1059:3, 1059:17,	909:10, 948:19,	11:20 [1] - 887:6	1080:9
'06[1] - 835:11	1059:23, 1060:6,	953:23, 992:19	11A [1] - 1091:4	1990 [1] - 1083:18
'08 [1] - 789:21	1137:4	10,000 [1] - 809:9	122 [1] - 831:24	1990's [4]-957:12,
'14[1] - 801:18	'95 [25] - 1023:21,	10-K [1] - 818:19	123 [2] - 874:7, 878:5	958:11, 960:24,
'15[1]-801:18	1024:1, 1024:5,	100 [1] - 858:13	13 [8]-772:3, 832:2,	1130:14
'16[1]-801:19	1024:9, 1024:17,	1001 [1] - 1027:22	832:7, 832:8, 832:9,	1990s [1] - 1040:10
'189 [3] - 848:24,	1024:19, 1024:24,	1001A [1] - 1027:22	832:12, 832:14,	1991 [4]-1082:3,
849:17, 849:20	1025:13, 1025:20,	1001B [2] - 1027:23,	834:19	1083:18, 1129:5,
'550 [84] - 816:21,	1026:5, 1027:14,	1057:23	14 [10]-857:24, 883:5,	1129:24
828:3, 828:15,	1048:5, 1048:12,	1004 [2]-848:6,	1095:22, 1103:6,	1992 [1] - 1030:14
832:18, 834:6,	1050:9, 1050:17,	850:2	1124:17, 1133:18,	1993 [2] - 957:7,
836:5, 838:20,	1052:4, 1056:2,	101 [1]-884:4	1133:22, 1134:3,	1043:19
843:3, 849:4,	1057:7, 1057:11,	1011[2]-934:7,	1147:23, 1147:24	1994[33]-957:7,
849:13, 853:11,	1057:17, 1058:8,	935:13	14-217-RGA [1] -	1033:14, 1034:10,
854:17, 855:2,	1073:22, 1135:5,	102 [2]-1131:14,	767:5	1035:1, 1035:7,
855:4, 855:7,	1137:1	1149:22	141 [2]-1068:2,	1035:8, 1039:1,
855:16, 855:23,	'96 [1] - 1136:22	1023 [3]-1040:14,	068:3	1039:5, 1039:11,
856:3, 856:6, 884:2,	/S [1] - 1107:24	1077:22	14B [1] - 932:8	1039:13, 1040:22,
1078:9, 1084:13,	/s [1] - 1153:19	$103 \text { [2] - 1132:6, }$	15 [10]-797:19, 802:8,	1046:12, 1048:4,
1084:14, 1084:20,	/TKEUFPD [1] -	1132:8	802:10, 843:16,	1052:8, 1058:14,
1085:1, 1085:9,	1107:24	1036[3]-1044:1,	844:11, 869:22,	1065:9, 1066:11,
1086:19, 1087:3,	0371[1] - 1122:20	1044:10, 1077:23	886:9, 953:23,	1066:13, 1066:19,
1087:6, 1088:20,	0372[1]-1122:20	1037 [4]-1045:24,	1060:16	1066:24, 1069:11,
1090:2, 1092:5,	0387 [1]-1122:23	1046:14, 1077:22,	15,000 [1] - 959:15	1075:20, 1075:24,
1092:6, 1092:10,	$0395{ }_{[1]}$ - 1122:24	1146:21	$158{ }_{[1]}$ - 875:10	1076:9, 1130:18,
1093:3, 1094:20,	1 [46] - 844:13, 847:15,	1071 [5]-834:13,	$159{ }_{[1]}$ - 1041:6	1131:4, 1135:5,
$\begin{aligned} & \text { 1095:20, 1096:11, } \\ & \text { 1102:14, 1102:20, } \end{aligned}$	$\begin{aligned} & 847: 18,865: 22, \\ & 866: 1,878: 24, \end{aligned}$	$834: 22,834: 23$, $875: 21,1005: 23$	$\begin{gathered} 16[2]-1148: 4, \\ 1148: 16 \end{gathered}$	$\begin{aligned} & \text { 1135:14, 1135:17, } \\ & \text { 1146:3 } \end{aligned}$
1104:6, 1104:12,	881:7, 881:22,	875.21, $1076{ }^{\text {[1] - 1090:24 }}$ [1148:1	1995 [16]-959:17,
1104:14, 1104:21,	883:5, 1004:20,	1087 [2] - 1039:7,	875:12	980:24, 1023:1,
1106:10, 1106:19,	1006:12, 1041:7,	1077:22	167 [1]-875:11	1027:11, 1044:4,
1107:7, 1107:16,	1055:21, 1092:9,	1088 [5]-1033:17,	167.8 [1] - 997:10	1044:6, 1048:10,
1107:21, 1108:18, 1109:10, 1115:19,	1092:12, 1093:9, 1095:17, 1096:22,	1033:24, 1034:18,	168 [1] - 1069:5	1048:14, 1050:2, $1064: 12,1064: 16$,
1115:23, 1117:9,	$\begin{aligned} & \text { 1095:17, 1096:22, } \\ & \text { 1096:23, 1102:14, } \end{aligned}$	1077:23, 1149:15	169 [1]-1069:13	1064:12, 1064:16,
1117:15, 1119:3,	1103:5, 1103:9,	1095 [2]-974:19,	17 [2]-797:18	1065:13, 1073:15.
1120:5, 1121:4,	1103:10, 1107:21,	1028:4	171.18 [1] - 997:11	1133:10
1121:12, 1121:21,	1107:24, 1115:21,	11 [4] - 857:23, 956		1996 [1] - 1030:15
1122:16, 1123:10,	1117:4, 1117:18,	1024:3, 1092:20	176[1] - 1046:14 177 [2]-1071:20	1997 [1] - 1095:8
1124:1, 1125:1,	1120:5, 1122:16,		176 [2] - 1074:4	1999 [4]-948:19,
1125:4, 1125:5,	1123:10, 1123:11,	1028:4	17th [1] - 790:19	962:10, 1011:23,
1134:15, 1135:21,	1124:12, 1124:17,	1114[3]-930:22	$18[1]-997: 15$	1012:9
1136:5, 1136:15,	1124:21, 1133:17,	931:1, 949:9	$19[3]-948: 19$	1B[1] - 1140:8
1136:21, 1137:9,	1133:22, 1134:3.	--	19[3]-948:19, vice 4, 1075:9	1C [1] - 1140:6

2 [17]-865:19, 991:12,	834:3, 834:5, 841:3,	832:13	$367{ }_{[1]}-1039: 18$	5:03 [1] - 1150:18
992:19, 1024:3,	843:2, 848:15,	215 [1]-1088:6	37 [1] - 1040:5	5:05 [1] - 1152:12
1096:22, 1096:23,	856:18, 857:16,	219 [4]-819:15,	$376[1]$ - 1122:20	5:15[1] - 998:24
1144:17, 1144:20,	857:23, 861:11,	819:18, 875:12,	377 [1] - 1122:20	6[1] - 1090:23
1144:21, 1144:22,	861:20, 869:18,	875:14	$38[2]-857: 6,857: 9$	$64[3]-1091: 11$,
1144:23, 1145:7,	871:17, 889:12,	22 [1] - 824:7	$380[1]$ - 1122:20	1091:20, 1148:17
1145:11, 1145:17,	942:5, 945:4,	$223{ }_{[1]}$ - 1071:21	381 [1] - 1122:21	66[2] - 799:18, 875:11
1145:20, 1145:24	948:23, 980:17,	24 [1] - 1069:5	3D [9] - 892:14, 895:8,	6A [1] - 767:10
2.4 [1]-1041:17	987:10, 987:12,	$25[11]-767: 9,792: 24$,	895:13, 895:21,	7 [8]-801:24, 811:9,
20 [2]-797:19, 797:20	988:6, 990:13,	808:11, 808:13,	1037:17, 1037:21,	865:15, 865:23,
20,000 [1] - 961:22	1007:2, 1007:6,	809:5, 809:18,	1083:19, 1146:6,	877:15, 879:10,
200 [8] - 794:3,	1007:20, 1067:15,	811:10, 908:21,	1146:23	931:21, 1045:12
803:17, 805:7,	1069:24, 1070:3,	909:20, 1074:4,	$4[5]$ - 767:3, 856:10,	7,099,000,000 [1] -
810:21, 827:15,	1070:4, 1075:22,	1153:11	857:11, 1086:24,	826:17
857:13, 857:15,	1076:4, 1076:8	25th [2]-1090:18,	1148:14	7,099,171,846 [1] -
875:12	2007 [3]-931:23,	1153:15	40 [1] - 937:15	801:6
2000[2] - 859:1, 898:6	934:14, 936:14	$260{ }_{[1]}$ - 1017:15	400 [2] - 858:13,	7.1 [5] - 858:23,
2001[2]-969:22,	2008 [12]-771:8,	271 [1] - 875:11	1088:12	859:20, 877:16,
972:7	774:22, 775:10,	28 [9]-883:5,	403 [3] - 772:18,	878:17, 879:5
2002 [2]-948:23,	776:1, 776:4,	1095:22, 1103:7,	774:4, 786:19	7.3 [1]-809:15
1087:17	777:23, 778:1,	1124:18, 1133:18,	45[4]-790:11,	70 [1] - 793:1
2004[6]-803:4,	779:3, 779:22,	1133:22, 1134:3,	790:22, 791:	$72[1]-875: 11$
899:16, 951:24,	786:16, 789:16,	1148:20, 1148:24	875:11	72C [1] - 798:5
972:14, 976:21,	789:17	28th [1] - 804:4	450 [1] - 1031:2	73 [3]-798:14,
979:13	2009 [1] - 771:9	2D [4]-1037:17,	48[3] - 819:3, 822:12,	798:16, 875:11
2005 [58]-770:6,	2010 [37] - 770:6,	1037:20, 1146:5,	1130:6	767 [1]-1153:10
770:8, 770:21,	770:10, 770:12,	1146:24	49 [2] - 821:5, 822:21	76ers [1] - 891:21
772:22, 773:10,	770:19, 770:20,	3 [28]-835:19, 836:11,	5 [14]-835:19, 836:11,	$8 \text { [6] - 865:17, 866:11, }$
773:13, 773:18,	771:9, 772:12, 773:14, 774:22.	836:17, 841:7,	836:17, 841:7,	900:6, 900:9,
775:7, 775:17,	773:14, 774:22,	841:8, 883:5,	841:8, 852:8,	900:12, 1122:22
776:5, 776:15,	775:10, 776:2,	948:23, 1006:4,	852:10, 886:15,	800,000 [1] - 1082:4
776:21, 777:7,	776:4, 777:23,	1006:9, 1006:10,	886:19, 886:20,	844 [1] - 767:11
$778: 2,779: 5$, $779 \cdot 16,779 \cdot 24$,	778:1, 779:3, 779:22, 786:17,	1006:11, 1095:22,	1006:4, 1006:9,	89 [2] - 948:19,
779:16, 779:24,	779:22, 786:17,	1096:23, 1096:24,	1006:10	1031:13
$780: 2,780: 21$, $786: 9,795 \cdot 9,803: 1$	$\begin{aligned} & \text { 790:19, 790:20, } \\ & 800: 24,801: 1, \end{aligned}$	1103:6, 1124:17,	5.6 [2]-936:10,	8:30 [1] - 1152:10
786:9, 795:9, 803:1,	800:24, 801:1,	1133:18, 1133:22,	936:11	8:32 [1] - 767:9
804:5, 806:9,		1134:5, 1144:16,	50 [17]-811:4, 811:5,	8:45 [1] - 1150:15
$\begin{aligned} & \text { 806:12, 806:14, } \\ & \text { 809:3, 810:2, 810: } \end{aligned}$	859:2, 873:23,	1144:17, 1144:19,	811:17, 811:18,	$9[3]-810: 16,857: 6$,
810:9, 810:19,	874:7, 875:15,	$\begin{aligned} & \text { 1145:8, 1146:10, } \\ & \text { 1146:12, 1146:14, } \end{aligned}$	811:23, 812:2,	1092:19
810:21, 811:14,	878:3, 878:8,	1146:15, 1147:21		94[1]-1076:16
817:9, 817:10,	878:21, 879:9,	3-1/2 [1] - 852:10	61:16, 862:1,	$95[7]$ - 1070:9,
821:10, 827:24,	879:16, 880:12,	3.0 [1] - 803:1	$873: 12,873:$	1072:13, 1073:18,
829:6, 829:17,	1007:24, 1008:2	$30[2]-823: 23,824: 5$	881:1, 885:21	1073:19, 1076:24,
856:19, 856:22,	2011 [3]-773:14,	300 [4]-809:19,	50(a) [1]-872:21	
857:13, 857:15,	819:8	868:12, 982:14,	50,000 [1] - 972:15	$9: 15[2]-785: 2$
857:16, 857:19,	2012 [2]-889:13,	1017:15	$500[2]-1049: 15,$	9:15 [2] - 785:2 9th [2]-806:12,
858:5, 858:17,	1079:15	$31[2]-805: 24,875: 12$	1128:10	9th [2]-806:12, 806:14
861:21, 862:5,	2013[3]-801:12,	3150 [2] - 791:21,	50A [3] - 877:4, 877:6,	806:14
880:11, 899:3,	900:14, 901:3	816:7	885:5	A's [1] - 994:14
899:21, 921:22,	2014 [4]-792:15,	$321[1]-1017: 1$	$51[5]-817: 23,$	a.m [4]-767:9,
931:21, 933:5,	900:17, 933:6,	$329 \text { [3] - 989:15, }$	817:24, 821:2,	872:12, 874:23, 887:6
942:8, 979:12	936:14	989:19, 1000:8	821:4, 822:21	A1 [3]-1104:15
2006[44]-779:14,	2015 [1] - 953:7	$336{ }_{[1]}$ - 1072:4	$53[1]-811: 6$	A1 [3]-1104:15, 1107:23, 1114:13
780:1, 809:14, $810: 11,810: 14$	$2016 \text { [4] - 767:9, }$ 801:4, 1153:12,	337 [2]-1072:2,	540 [3]-1041:3,	ability [6] - 840:15,
$\begin{aligned} & \text { 810:11, 810:14, } \\ & \text { 810:22, 817:9, } \end{aligned}$	801:4, 1153:12,	1072:3	$1142: 16,1145: 14$	927:20, 1084:1,
817:10, 829:12,	$\begin{gathered} 1153: 15 \\ 213[2]-832: 11, \end{gathered}$	35[4]-953:22, 954:3,	55[2]-797:23, 875:11	1128:4, 1144:23,
829:19, 829:22,	$\begin{aligned} & 213[2]-832: 11, \\ & 832: 12 \end{aligned}$	1131:14, 1132:6	550 [3]-827:10,	1146:4
830:17, 832:21,	$214 \text { [2] - 832:11, }$	350 [1] - 875:11	327:11, 1081:18	able [28] - 770:22,
				786:3, 790:2, 813:5,

$$
\begin{aligned}
& 1116: 23,1117: 20 \\
& 1120: 3,1121: 5 \\
& 1123: 2,1123: 8 \\
& 1136: 5,1136: 14 \\
& 1141: 1,1141: 16 \\
& 1144: 8,1144: 11 \\
& 1149: 17
\end{aligned}
$$

basement [1] - 972:23
bases [2]-1089:1,
1133:13
basing [1] - 1027:15
basis [15] - 777:12,
777:14, 793:3, 794:7, 799:7, 805:18, 827:8, 830:21, 844:23, 845:19, 855:18, 898:20, 1111:1, 1123:17, 1125:12
beach [1] - 970:11
became [9]-899:19, 956:2, 956:3, 978:22, 1013:21, 1031:12, 1127:19, 1128:6, 1129:15
become [2] - 923:15, 978:19
BEFORE [1] - 767:13
began [5] - 810:11, 1080:8, 1081:9, 1087:19, 1113:10
begin [7]-786:20, 934:14, 1104:15, 1104:19, 1110:2, 1111:18, 1137:22
beginning [8] -
936:14, 948:14, 1025:3, 1037:16, 1086:5, 1121:3, 1134:9, 1137:2
begins [5] - 820:24, 876:6, 886:21, 934:13, 1094:22
below [8] - 807:8,
833:14, 841:16,
841:18, 905:7,
930:24, 1106:4,
1143:9
bench [2] - 795:5, 947:12
benefit [4] - 939:20, 1079:5, 1092:11, 1123:22
benefits [5] - 814:12, 814:14, 819:13,
922:17, 939:22
Berkley [4] - 896:4, 1030:17, 1030:18, 1035:19
Berlin [3]-990:16,

990:21, 991:1 \quad Birch [41] - 887:13,
Bernard [1] - 1021:4 best [12] - 779:7, 784:11, 786:1, 869:7, 885:3, 1026:22, 1036:7, 1036:17, 1036:20, 1106:20, 1106:22, 1126:14
beta [1] - 985:22
better [15] - 774:5, 836:1, 838:11, 838:17, 894:16, 957:20, 1032:3, 1035:6, 1035:8, 1048:24, 1065:6, 1106:3, 1108:3, 1108:7, 1108:10
between [23] - 797:19,
839:11, 846:20, 848:4, 852:9, 853:17, 897:15, 905:18, 905:20, 906:12, 931:14, 931:19, 955:5, 971:21, 984:14, 1007:2, 1007:19, 1101:13, 1111:14, 1114:12, 1123:3, 1132:12, 1150:2
beyond [6] - 782:17, 782:20, 783:7, 784:7, 826:1, 865:1
big [27] - 903:18,
909:21, 930:1, 930:9, 959:1, 961:4, 961:7, 961:8, 963:2, 964:1, 965:5, 967:9, 973:5, 973:7, 973:15, 981:24, 982:4, 984:8, 992:11, 1006:23, 1023:1, 1047:15, 1047:16, 1054:1, 1099:8, 1128:14 billed [1] - 1088:9 billion [12] - 792:14,
801:5, 801:24, 803:13, 823:14, 858:23, 859:20, 859:23, 877:16, 878:18, 879:5, 971:2 binary [7] - 905:6, 907:16, 908:7, 912:8, 1101:16, 1101:19, 1113:17 binder [5] - 832:3,
832:5, 832:6, 832:7, 1033:17
birch [1] - 943:23

887:14, 888:11, 888:16, 889:14, 890:10, 892:21, 893:19, 894:10, 895:22, 896:21, 900:15, 901:4, 901:24, 902:24, 908:14, 914:10, 918:21, 919:12, 922:15, 923:8, 932:20, 934:10, 934:19, 935:20, 937:18, 938:6, 940:14, 942:4, 945:8, 945:20, 947:18, 948:1, 949:1, 949:6, 1109:3, 1109:6, 1109:19, 1110:9, 1111:21, 1111:24
BIRCH [1] - 888:5
Birch's [1] - 1112:6
bit [39]-786:21,
786:22, 788:2,
805:5, 808:23,
811:17, 815:13,
818:5, 839:22,
863:3, 872:9,
881:20, 891:15,
902:24, 906:3,
912:15, 915:19,
917:22, 923:9,
937:16, 948:2,
952:22, 954:2,
971:23, 979:4,
991:5, 1009:10,
1033:11, 1034:12, 1039:15, 1040:3,
1041:16, 1053:21,
1054:8, 1094:17,
1099:17, 1122:3,
1126:15, 1127:2
blink [1] - 915:22
blow [8] - 808:20,
809:1, 934:9,
937:15, 989:16,
990:1, 1003:4,
1053:10
blue [7]-906:7, 907:2,
907:3, 912:16, 913:8, 1110:3,
1110:15
BLUMENFELD [1] -
768:4
blurrier [1] - 921:9
blurry [5] - 921:10,
922:24, 923:2,
923:6, 1089:23
blurts [1] - 795:23
board $[7]-954: 11$
$968: 19,968: 20$
$968: 21,977: 18$
$978: 8,986: 20$
boarders [1] - 890:16
boards [1] - 973:12
Boeing [2] - 958:1, 958:6
bomb [1] - 971:10
bombed [1] - 975:18
bombers [1] - 970:10
bones [1] - 1017:1
Book [3]-776:15,
776:18, 777:23
book [7]-771:11, 771:18, 771:23,
772:1, 772:5,
772:23, 835:2
booked [1] - 932:1
books [3] - 1081:15,
1081:18, 1081:22
borders [1] - 965:2
boss [1] - 924:21
bosses [1] - 973:7
bother [2] - 854:13, 921:14
bottom [25] - 802:17,
806:8, 806:19,
808:19, 811:3,
811:8, 821:8,
850:22, 852:11,
907:3, 907:4, 909:5,
909:9, 933:14
936:9, 1040:5,
1056:11, 1056:24,
1057:3, 1068:11,
1093:11, 1115:7,
1116:19, 1127:24
BOTTS [1] - 767:21
bought [2] - 779:8, 1013:14
box [2] - 809:5, 890:17
boxes [2] - 964:13,
1044:22
boy [1] - 964:21
brackets [1] - 1040:4
branch [1] - 1107:13
branches [1] - 904:14
brand [5] - 815:23,
816:1, 816:4,
816:11, 897:10
branding [1] - 816:5
brands [1] - 816:12
Brandywine [1] -
1092:3
break [13]-861:3,
861:4, 872:8, 872:14, 874:11,
990:5, 991:12,

1038:7, 1060:15, 1060:17, 1060:21 breaks [1] - 786:21 breakthrough [1] 956:17
BRETT [1] - 768:8
Brett [1] - 1079:6
BRIAN [1] - 767:18
bridge [1] - 1018:19
brief [4] - 780:14,
785:11, 873:3,
1143:22
briefing [4]-981:19, 981:20, 982:9, 983:16
briefly [5] - 769:8,
770:15, 1002:6,
1021:21, 1058:1
briefs [1] - 769:16
brightest [1] - 945:23
bring [20] - 787:19,
788:3, 819:17, 822:18, 831:23, 843:16, 848:5, 873:5, 874:9, 874:19, 887:4,
891:12, 892:5,
937:14, 992:21,
999:17, 999:22,
1061:3, 1089:22,
1146:9
bringing [2] - 891:5, 1061:7
broad [5] - 867:6,
961:8, 961:10,
1146:15, 1149:2
broadcast [2] -
973:24, 974:2
broader [2] - 971:15, 1022:12
broken [2] - 1017:1,
1141:1
brotherhood [1] 971:12
brothers [1] - 971:6
brought [6] - 866:7,
884:4, 890:8,
907:21, 912:2,
1047:19
browse [2] - 926:18, 927:2
browser [2] - 937:4
browsing [1] - 898:2
budgets [1] - 785:5
build [11] - 911:18,
955:15, 960:4,
962:19, 962:24,
967:3, 968:12,
973:6, 973:8,
1001:21, 1018:18

32：8	978：1，980．6，	966.15	993：13，993：20，	1075．12．1126．9
ding tion－821：23， ：15，892：	1002：5，1014：8		993：24，994：5， 1004：11，1016．23	
911：24，954．6，				
96， $96.23,986.11$,		1011：4，1011：16．	${ }_{1032}^{1022}$	
			1002	
ings	792：，796：4，		1074．3，1079．7．	
${ }^{9547}{ }^{\text {a }}$	803：24，812：14	campusi $81-981$ ：	${ }^{10846.6 .108424}$	
	819：17，20．9，		1085：4，10888，	（inte：20．1072：22，
（		Canadatif 108	（1088．15，1009：16，	072．24．1073．2
	－		－1092：46，102：	
（ex	888．10，940：13	Canaian	1130．22，113223，	10722
968：4，9818， 9	${ }^{\text {a }}$	cann	－	1073．22
	隹，90．10	cannot	1150：14	
1212	（1016：14，1018：4	${ }^{\text {capab }}$		1072
	1019：4，1029：3．	$805: 12$		
5i，	1066：12．1075．58，	cap	Casteman	ceilin
870：4，870：5，	1075：19，079：3		8，814，1，84，	
1003：20，0004：13	1142：1	${ }^{\text {caption }}$		
	${ }^{\text {c．Al｜}}$			
：12，				
Stil－98：16				，880：3
析	（107．4．11086．6．	1076	${ }_{\text {Casti }}$	
（7）	H119：4，1119：11		\％ 10286	
810：7		cared		
， 118.515	cine：1，1106		categeries	conter（10）－892
816：22，817：1，		carrierfic		
	（118，24	case	（ 938.22 .940	
	（11921	lotili，		¢983：17
941：9970：16，				centers
984，8，1001：10		（207，		cens
－100：24		${ }_{8}^{827712} 8$	${ }_{\text {cex }}^{\text {CRRE［1］－973，}}$	103
butter［1］－916：14 buttons［1］－972：			ciclil 1053	cents 8 PI
	Cal［1］－896：1	875：4，	（1024：16，1026：74，	87992，
		${ }_{8}^{883}$	${ }^{1055}$	ceo
		8877．，892：112	1056：9，9057	1000
（ $978.23,987.24$,	${ }_{1}^{\text {cala }}$	900：19，005：	1058．5， 1072	certain
，100：22	迷	912：23，911，		${ }_{7} 994.23,7989.12$,
	103018，		，1073：6，	
		${ }^{9343,16,945,1 / 2}$	（1073．7．1073：1，	
buying $[7]-844: 20$, $844: 22,926: 11$,	1079：16	953：19，975：11，	1073：14，1073：17， 1073：22，1073：24	$829: 8,860: 21$, $869: 4,1113: 13$

[10, 1731	967:11, 967.12,	1144.22 .114		-	
7, 856:1, $15,954: 23$		114		1032:	
$957.14,980.2$	ch				
- $988.12,1,12$	choices [1]-973:	1146:9, 1146:	956:16,954	(965:13:032:1.	
			${ }_{\text {che }}$		
$\underset{\substack{\text { Cerrifica } \\ 11535}}{\text { a }}$				collection (1)-	
ied [\|]-1153:			cileseli-	(1)-	
ceritiy 1 - 11539			829:4, 872		
ceierali- 804.1818			${ }^{\text {cosed }}$	14	
chen	crios		(iosely	coin	
			(e)		
chalenging (1)		1095322 109523			
9422			107		
50.2	${ }_{\text {cosem }}$	124:2	-		
changed [19, 931:17,		113	974:15,975 ${ }_{\text {97\%:10 }}$	combinition	
1055:10, 1127:2.2	${ }_{\text {coircum }}^{\substack{\text { cirum }}}$	114	coarse		
$\xrightarrow[\substack{\text { changes } \\ 9797,97 \\ \hline 18 \\ \hline}]{ }$	781:	${ }_{1}^{1148}$	(1033.2,10372,		
998:20,998:22		${ }_{11}$ cla	1042:5, 1042		
	$\begin{aligned} & \text { cited [1] - 1137 } \\ & \text { cities [1] - } 959: \end{aligned}$	claries	(1)	come	
1146:16			$\substack{\text { coast } \\ \text { code }}$	comingif -78:4,	
${ }^{108324}$		dean	931:12	${ }^{\text {918,5, 985:18, 990:5 }}$	
${ }_{\substack{\text { characterie } \\ \text { gsili }}}^{\text {che }}$		cicker	932:12, 932	com	
characterization	${ }^{882}$		942:15,9429,		
8,995:10,	lobes, 1086:20, 10,	¢			
cterizing \|		1102:7.7	1027.1.		
		Clearerel\| $-881: 12$			
	11172,2,		970:5, 985:, ,985:2,		
Se4.3 28.9,	${ }^{11222: 12,1}$	cileary		commercials [1]-	
charged $83-789$ 7	${ }_{4}^{1124}$	1078:1	1051:19,		
11-802:5	-	coick			
charss 11-774:12	${ }^{11444}$		1077.9 1077.10,	${ }_{9}{ }^{\text {954:10 }}$	
(cheitil 99.15	Cliaimer-8817,		1116:4,	${ }_{\substack{\text { communicated [\|]- } \\ \text { R433 }}}^{\text {a }}$	
20	(10.2.1.	1057.4.057:2	C122.91122,	com	
childili-20:8,		ciole	17807:		
5,978:15		clica	114:		
			(e)		
${ }_{90}^{96}$	11	m-90:24			
$907: 20,908: 4$, $908: 13,921: 7$,	1		, $1051 / 13$		

-775.5	22:22	1089:4, 1089:7,	799:6,7928,7,7989	olars
$810: 14,811: 4$ $811: 24,812 \cdot 3$		dispute [1]-727:14		
8i7z, 818.5		distill 1 2-946:13,	${ }_{7} 788.15,7988.20$.	
		946:22		
ciel	9913,		(en	
(ex	1150.14	distribute (1)-95:18	${ }_{\text {805:3, }}^{\text {cos.6, } 8001}$	
	(iscossed	distibuted diz-1		${ }_{\text {done }}^{\text {dine }}$
		-1024.5.5.105511		799916:802.11
(10923,122	824:1, 826:5,	1097:11,	${ }_{818}^{818}$	
directed $[1]$ -	55:2, 870		818,24, $89,9,8$,	
tion [1-	ciele	dis	(917
11:24,1022:2	1055:19, 1095.17			
ctions 11.89	discusingr1.	${ }_{\text {disticTrel- } 7871.1}$	(ix	990:17.988.9,
\%8, 8 4996,	789	${ }^{\text {distric }}$	${ }^{855: 176,8}$	
	¢922:1			
10309, 11382.23			9325	
114, 1177:74	7996	110. 1108	994:9, 1013.6	
1020:19	¢ $789.15,795.6 .6$	1088.1 1108,	cole	
11:17, 102019			1043:3, 1043	
111	- 815.1.825.4,	divided [ip-966:17	1044.16, 1046:3,	
	ciel			
directis	$841: 19,883$ $846: 13,846$ 84,	${ }^{112483}$	(1072.5, 11402	Suble
				026:1
ree [9]-781:3	边, 93	H10.20, 11		
1098.2,	(eatine,	(1104.20, 1105	docume	
${ }^{1127.8}$		${ }_{1}^{120}$	984:22,	,1161812
[1] - 966:6	discusion	${ }_{\text {divel }}^{1141}$	docume	
	discusions 1 (13)	${ }^{1102022.1119}$	777:17.777.19,	2:13,
	${ }^{814,77,823,7}$	-	788:16, 79:17,	
		divisio		892:13, 904.16,
Lesed			comer	911:6,
	877.7. 1007 $1007: 6$		(ex	
1139.78, 1140:16:	disk di- 900 :	doctior $11-1088.17$		9si.2,
4, 4 4,143:12:		(eotorel 1089,2,	851:1, 85:175,	1037.1.1
discloses.g-1		1090.1.1023,		(1038.7.1040:3,
(11404:12, 114	1083:4, 100			
		dotatinel\| -776:		
.147:19	1135:14, 1135:1	$\text { -858: } 58.12,$	(14,	20,
1090:20, 1143:1,	displayed 19.922	${ }_{\text {doc }}^{88}$		(116:911, 119:22,
discontinui	20, 960:21,	779:20, 79:17	823:14, 826:13,	$1142.14,1147: 11$ $1148 \cdot 17,1150: 19$

rraing｜1］	1145：33，1148：2，	Eagles （1）－891：23	893：24，894：2，	941：24，942：8，
9894．4	गT	eary ［4］－779：14，	析	942：14，942：15，
5ad 5 ［63］			ciele	
980：1，980：9		10：10．	897．24，898．12，	
${ }_{\substack{\text { downloading［1］－} \\ \text { O3：6 }}}^{\text {a }}$	${ }^{1090911}$			21，
downtown［｜］－		1128：3，1，130：14，	－	
22：4	Dix－1087（｜） 1146.2	1132.24	${ }^{\text {899，19，} 899.22}$	
	${ }^{\text {dTX }}$－1088［2］－141：6，		899．2，900：5，	
	${ }^{\text {a }}$		900：	
：18，865：20，	${ }^{1057} 23$	775．23，779，9，	900：6，901：10，	
	DTX－1196 11	779：10．779：99，	901：4，9 ${ }^{\text {a }}$	964.17
1078：5，1078：	du	799：10，793：2，	20，93：2	（em，
（1079：10， 10799		（tas．23．796．21，	903：3．003：10．	5
$1079.11,1079$ 107924,1089	94923， 10	7977，800：121	（en	$977: 22$
1083：10，1085：2，	during（2a）－772：37	（exis	900710	974：3，974， 9 ，
1086：3，1086：9，		804．8，804：3，	907：18，	
1115：3，1115：17				
1127．5．1151：13，	958：10，961：16，	${ }^{\text {808：23，} 809.2,}$		
（155：18，115：38	986：16，986：19，			
		80．20，81．1，		
dra	1024：24， 1023	811：10，	920：8，	10884，13，1084，19，
drav			920：23，	（105．7．1．1087．1．，
drawis	1094：18，1146：19	817	923	
912：14．916：1．	dutie			
	DYk［｜1－767	818：10		（1096．16，1097．5，
$966: 10$	E－mail｜1］－900：12	8，899：3，827．1．	${ }_{\text {a }} 924.411$	9.4
drawings［1］－1010：3 drawn［3］－905：18		ciel	，	
，				
		（ix	，	3，1
deamedil 96.3				14，
cirle		${ }_{8595,5859}$	929：29299：3	
（ex		cis		1109：16，111：3，
		ciel		（10）
	987：4， 988.2			（115：20，1115：22，
			933．21， 334.4 ，	11178， 1117 72，
1004：4，1042：19，				
（104．1．104．2．24，			－ 9 935：17．935：19，	
	（1053．18，0053．9，			${ }^{\text {a }}$
为				
21，1199：15		退	（e）	（1）
1142：17，1143：14，		892：22， 892 Report	940．	

(302) 658-6697 FAX (302) 658-8418

904:23, 905:5,	exhausted [1] -	expectations [3] -	exploring [1] - 898:2	facts [1] - 770:20
905:16, 907:1,	1118:19	794:14, 850:10,	expressed [2] - 826:9,	factual [1] - 831:14
907:21, 908:14,	exhibit [40]-799:18,	62:16	1118:	faculty [1] - 1082:23
911:12, 912:7,	799:23, 803:17	expected [4] - 777:15,	expressway [1] -	fade [1] - 788:14
912:11, 919:9,	805:6, 805	810:3, 857:8, 861:2	972:24	fair [6] - 773:12,
922:23, 927:13,	805:24, 848:8	expecting	extend [2] - 909:20	774:16, 831:15,
929:20, 933:22,	875:21, 878:4	16, 811:15	914:20	831:21, 844:21,
1114:13, 1114:17	933:12, 934:10	1052:18	extended [2] - 773:7,	1152:8
1117:8, 1124:4	934:19, 935:13	expedition [1] -	1066:14	fairly [3] - 808:13,
except [2] - 885:10,	937:17, 937:19	973:19	extent [7]-771:	808:15, 1063:20
1129:14	937:20, 949:9	expense [1] - 821:22	8, 794:2	fairs [1] - 984:19
exception [1] - 940:5	974:20, 989:	expenses [1] - 978	2:16, 815:1	fall [1] - 995:9
exceptions [1] -	1000:7, 1002:12	expensive [1] - 924:6	852:21, 885:14	fallen [1] - 1017:1
847:22	1003:3, 1003:5,	experience [13] -	Exterra [2] - 1031:19,	Falls [4] - 1035:23,
excerpt [3]-1034:15,	$\begin{aligned} & 1005: 23,1023: 1 \\ & 1023: 2 . \\ & 1033: 17 \end{aligned}$	868:22, 893:2,	1031:23	1050:13, 1060:9,
1116:21, 1141:9		894:5, 925:22,	extract [1] - 1140:3	1060:10
exchange $1015: 12$	1033:19, 1039:7	925:24, 927:2,	extraction [1] - 797:5	$\begin{gathered} \text { familiar [10] - 771:17, } \\ \text { 7an•11 82a.10 } \end{gathered}$
	$1044: 3,1048: 18$	961:20, 988.23	extracts [1] -	790:14, 839:10,
Exchange [1] - 818 excised [1] - 783:1	$1056: 18,1057: 22$	961:20, 988:23,	extraordinarily [1] -	854:11, 923:12,
excited [4] - 814:15	$1090: 13,1116: 16$	1133:8	878:1	923:15, 938:7
983:12, 1083	1122:19, 1128:17	experienced [1]	70:13, 772:13	1128:19
1087:18	1142:	892:8	773:19, 1151:12	family [6] - 889:9,
excitement [1] 899-12	$\begin{gathered} \text { Exhibit [34]-790:1 } \\ 790 \cdot 21 \quad 791 \cdot 4 \end{gathered}$	expert [8] - 783:	eye [2] - 913:24,	889:11, 905:23,
899:12	791:21, 797:23,	787:2, 815:6, 943:16, 943:1	915:23	$\begin{aligned} & 905: 24,923: 20, \\ & 979: 1 \end{aligned}$
$\begin{aligned} & \text { exciting } \\ & 983: 4 \end{aligned}$	$798: 5,798: 14$	$\begin{aligned} & 943: 16,943: 18 \\ & 943: 21,993: 15 \end{aligned}$	$\begin{aligned} & \text { face }[2]-813: 17, \\ & 894: 13 \end{aligned}$	979:1
exclude [2] - 786:18	798:19	1078:5	facilities [1] - 1063	984:21
800:10	818:15, 819:15,	experts [5] - 770:	facility [3] - 981:23,	far [18] - 776:17
excluded [1] - 774:3	819:18, 834:13,	778:3, 778:6, 828:1	1002:7	792:12, 793:7
excluding	$843: 16,850: 23$ $869: 22,874.7$	ExpertSoft [4]	fact [27] - 810:12	864:24, 883:19
783:11, 800:22	869:22, 874:7,	1029:22, 1031:18	856:5, 877:13	898:20, 971:3,
exclusiv	$4: 7$	1042:9, 1042:13	881:17, 883:3	984:1, 985:9,
839:11,	$4: 7,937: 15,$	expertSoft [1] -	891:11, 919:8	1001:15, 1007:3
839:13, 839:15,	$989: 18,994: 21$	$1030: 1$	919:17, 941:9,	1013:19, 1017:19,
839:19, 839:24,	989:18, 994:21,	explain [26] - 799:3	948:11, 977:17,	1017:20, 1018:10,
840:2, 840:9,	$34:$	800:12, 809:13,	979:15, 984:3,	1018:11, 1036:16,
840:17, 840:20	$1040: 13,1044: 10$	15, 818:16	96:21, 1015:16,	1112:14
$\begin{aligned} & 840: 21,841: 1, \\ & 844: 23 \end{aligned}$	1090:24, 1141:6,	819:20, 820:10	015:22, 1019:7,	FARNAN [3] - 767:18, 767:18, 767:19
exclusivity [1] - 840:4	43:2	$2: 3$	061:21, 1064:3,	fascination
excuse [5] - 992:16,	exhibition [1] - 1024:	0:18, 941:1	064:6, 1072:11	965:11
$993: 16,1012: 6$	exhibitors [1] 1057:18	51:14, 1034:1,	$1073: 10,1105: 19$	fast [4] - 915:22,
1062:17, 1089:17	1057:18	$041: 19,1044: 18$	1129:18, 1148:17	$920: 2,922: 8,987: 2$
excused [6] - 876:14,	exhibits [6] - 800:3,	1047:7, 1089:9,	factor [8] - 770:23,	father [1] - 1127:7
876:16, 876:23,	$\begin{aligned} & \text { exhibits [6] - 800:3, } \\ & \text { 875:6, 984:19, } \end{aligned}$	$\begin{aligned} & \text { 1089:13, 1091:1, } \\ & \text { 1113:6, 1117:20, } \end{aligned}$	771:13, 772:2,	favor [1] - 885:7
$\begin{aligned} & \text { 949:1, } 10 \\ & 1077: 19 \end{aligned}$	1027:22, 1077:21	$18: 10,1132: 1$	$\begin{aligned} & 772: 3,772: 7, \\ & 776: 10,776: 1 \end{aligned}$	favored [1] - 816:1 fear [2] - 878:12,
execute [6] - 1108:1,	1078:2	144:18	actor [1] - 776:7	$879: 2$
1119:10, 1119:11,	existed [6] - 948:8 948:14, 957:11	explained [3]	factors [18] - 776:	feature [1] - 893:8
1119:12, 1119:13 executed $[4]$ -	957:13, 1129:7,	$\begin{aligned} & 1000: 9,1107: \\ & 1116: 24 \end{aligned}$	$2: 5,802: 8$	features [17]-804:13,
1118:15, 1120:	1139:7	explaining [2]	2:15, 813:20	890:18, 900:23,
1123:12, 1124:3	ex	90:12, 1093	:21, 813:24	72:1, 1049:1
executes [1] - 1114:18		explains [1]-1139	14:3, 814:7, 815:9,	049:19, 1049:2
executing [1] -		explanation [2] -	$315: 10,815: 21$	1049:23, 1050:1,
1103:18	$1066: 3,1132: 13$	881:14, 993:2	324:10, 829:2,	1059:15, 1059:17,
Executive [1] - 950:8	ex	explore [4] - 804:10	877:11	1059:19, 1059:21
executives [1] -	991	926:19, 952:8, 954:8	factory [3] - 983:4,	$1060: 1,1141: 11$
	expect [1] - 856:24		883•6, 983:8	February [1] - 990:13

federal [8] - 799:11,	figure ${ }^{[12]}$ - 963:5,	1077:1, 1111:7,	1096:8,	892
799:12, 801:8,	036:16, 1036:20,	12712	1102:3,	956
1030:3, 1032:11,	, 1044:15	finely [1] -961:11	13	20, 963
1032:21, 1043:7,	1044:17, 1127:24,	finer [7] -960:22,	1103:18, 1110:2,	975:9
1127:9	1141:23, 1142:5,	1084:3, 1090:5,	1111:9, 1111:10,	focal [1] - 81
Federal [2] -880:5,	1148:2, 1148:14	1090:7, 1091:21,	1120:9, 1126:15,	focus [6] -925:2,
884:12	figured [1] -988:24	1092:1	1127:1, 1127:70,	967:2, 100:88
federaly [2]-1043:8,	figures [1] -1092:19	finest [1] - 1091:11	1127:18, 1130:7,	1000:10, 1054
1051:10	file [13]-885:4, 885:9,	finish [6]-882:15,	1130:12, 1131:13,	
fee [5] -858:6, 858:10,	886:14, 937:5,	917:4, 990:8,	1133:20, 1134:19,	focused [3] -897
939:3, 939:11,	937:6, 1085:12,	994:11, 1108:11,	1137:22, 1144:22	897:19, 1081:8
939:18	1087:1, 1087:2,	1121:6	1148:3	focuses [1]-1102:18
feelings [1]-843:3	1087:6, 1116:4,	finished [[] -91	Fishing [1] -929:20	folder [1] - 1056:
fees [3] -923:21,	1116:20, 1122:12	954:9, 1152:4	fishing [1]-9992:22,	foldes
923:24, 1025:10	135.21	hing 11 -	929:23, 930:1	
feet [3]-894:7, 909:11, 961:22	filed [3]-818:20, 1005:2, 1090:19	firm [2]-827:7, 1009:21	fit $[3]$ - $979: 17,979$ 979:21	$\begin{aligned} & 1070: 23 \\ & \text { follow (4) - 831:2, } \end{aligned}$
fell [1] - 970:4	files [6] -943:13,	firms ${ }^{\text {(1) - 827:10 }}$	five [13] - 780:9,	
felt [1]-989:2	18, 1101:8,	first t109 - $769: 9$	807:14, 816:12,	102:10
festival [1] - 1023:4	1115:3, 1116:9,	769:18, 772:11	820:4, 850:24,	Sllow-up [1] -985:12
fetch 3 I- - 916:10,	1122:13	782:12, 787:10	896:9,9, 09:10, 927:11 968.17	followed [2] - 1071:5,
916:16, 1036:12	(filing[17-1065:23,	795:20, 799:11, 799:010 804:13, /	927:11, 968:17,	1096:17
fetched [7] - $916: 24$ $917: 2,919: 14$,	$\begin{gathered} 1136: 20 \\ \text { fill }[1]-950: 18 \end{gathered}$	799:10, 804:13, 806:21, 809:20,	1068:4, 1068:10, 1113:21, 1148:17	
17, $2,919: 14,18$	filled [1] - 964:1	8010:11, 810:23,	${ }_{\text {fix }}[1]$ - 996:24,	
920:20, 920:21	final [18] -770:24,	813:4, 820:23,		949:24,
fetching [4]-915:15,	4, 885:20,	822:9, 832:15,	flagged [1] - 1069	078:22
920:18, 966:7,	911:22, 912:14,	832:19, 833:6,	flagship (1) - 898:16	ntil1-1056
966:11	918:16, 919:6,	833:9, 846:2,	flashlight $[1]$	Od [4]-1099:19
few [13]-779:15, 781:1, 781:8, 847,	919:15, 919:24, 921:1, 921:4,	848:22, 851:1 870:5, 881:5,	1036:19 flat $[1]-1037: 21$	$\begin{aligned} & \text { 1099:20, } 1100 \\ & 1101: 14 \end{aligned}$
858:11, 894:7,	922:13, 922:18	882:23, 887:12,	flawed [i] - 1005 : 8	FOR [1] - 767:2
923:23, 996:22,	923:4, 996:15,	887:24, 888:6,	flew [1]-960:17	Orbid [1] - 1064
1001:10, 1018:15, 1058:23, 110:8,	998:15, 1132:2, 1150.23	895:11, 898.24, 899.10, 899:23,	flight [12] -950:22,	ford.com [1] - 959:6
1058:23, 1100:8, 1150:10			954:20, 954:21,	foregoing [1] - 1153:9
fiction [1] - 963:11	1, 962:1,	917:13, 918:23,	956:1, 956:24,	(toreign (1) -1131:22
field [28]-913:19,	1045:14, 1094:8,	999:2, 924:16	957:23, 960:3,	forgoten [1] - 1008:1
${ }^{\text {953:21, 979:6, }}$	1111:17, 1148:19		982:0, 966:8,	rm [8 l -885: 16 ,
1013:10, 1013:11, 1022:10, 1036:14,	finance $(14.930: 20$, $931: 12,931: 17$,	924:22, 931:6 931:21, 931:24	1037:22	1014:18, 1085:5,
	932:14	932:2, 948:4,	filoor [4]-10	1,
1081:7, 1081:12,	finances (1] - $923: 12$	949:22, 951:23,	002:11, 1048:18,	1151:20
1081:16. 1082:2, 1082: 1082:21,	financial [12--802:15,	953:1, 977:4, 972:5,	1049:12	formal [1] - 999:4
1082:7, 1082:21, 1088:19, 1089:1		$\begin{aligned} & 977: 8,980: 18, \\ & 991: 24,993: 9, \end{aligned}$	flower [2] - 1052:	formally []] -934:15
1092:18, 1094:2,	818:18, 887:19,	995:7, 995:23,	fluidly [1] -952:9	1029.10
1094:4, 1094:8,	923:10, 923:13,	1003:19, 1016:17,	[22]-804:8,	former [i] - 970
1108:17, 1126:16, 1126:22, 1127:4,		1016:18, 1028:16,	8. 89:16,	formerly (1) - 1063:7
$\begin{aligned} & \text { 1126:22, 1127:4, } \\ & \text { 1133:7, 1140:1, } \end{aligned}$	$\begin{aligned} & \left.\begin{array}{l} \text { financials }[1]-893: 12 \\ \text { financing }[1] \end{array}\right)-977: 7 \end{aligned}$		952:8, 955:3,	forming $[2]$ - 1096:1,
1140:2	fine $[121-923: 2$,	1052:4, 1054:21,	9:11, 959:13,	
fields [1] - 1129:8 fifteen [6] - 781:20	923:6, 969:10, 999:13, 999:14	1054:24, 1055:1	00, 961:13	ort [2]
788:2, 783:4, 78		1061:18, 1074:18,		forth 4.4
898:13, 1081:18	1036:5, 1037:2,	1078:20, 1080:5,	73:13, 974:7,	
fifty II - 902:14	1037:3, 1037:14		974:8, 977:16,	forty [3] -1078:7,
Figure [5] - 1091:4, 1092:19, 1092:20,	141:21, 1042:	1087:2, 1087:13, 1087:15, 1091:6,	1040:5, 1059:10,	析
9, 1	142:15	,	Ha [8] -	781:14, 781:22,

782:4, 785:3,	860:13, 861:18,	963:15	9, 807:17	849:17, 890:15,
785:16, 785:19	861:21, 862:22	Game [1] - 962:20	2, 909:4	896:19, 964:23,
786:1, 802:22	$3: 15$	games [1] - 950:2	59:12, 1013:13,	964:24, 984:11
811:10, 853:5	863:23, 868:15	gaming [1] - 894:22	1014:8, 1078:6	1084:1, 1084:2
970:22, 989:13,	869:8, 1015:11	garage [3] - 964:12	11, 1092:15,	Globe [5] - 900:19,
990:24, 1000:18,	Free [3] - 858:15	964:13, 964:1	1126:23, 1127:10	900:20, 900:21,
1139:15	859:13	garden [1] - 975:1	Geographic [1] -	901:2, 1122:23
forwarded [3] -	fresh [1] - 1151:12	gas [3] - 8	1127:12	GmbH [1] - 767:4
1008:5, 1008:8,	Friday [2] - 886:16,	860:15, 860:19	Geographical [2] -	goal [3] - 920:3,
1008:9	999:	gathered [1] - 1097:11	1081:21, 1082:14	946:12, 946:22
forwarding [1] - 987:2	friend [1] - 977:13	gears [2] - 902:23	geographical [5] -	goals [5] - 775:22,
foundation [3] -	friendly [1] - 980:11	923:9	1045:19, 1082:19,	945:14, 957:20,
784:9, 795:23,	friends [2] - 916:12,	General [1] - 954:19	1083:5, 1127:3,	1032:7, 1032:8
825:18	964:7	general [15] - 789:19	1133:	gold [1] - 1082:13
founded [1] - 968:7	front	838:10,	geography [3] -	Goldstein [1] -
founders [1] - 977:15	806:16, 806:18,	880:20, 966:17,	1079:17, 1081:5,	1009:22
four [37] - 882:13,	841:8, 879:6, 915:5,	1022:4, 1026:14	1082:17	Goodchild [19] -
907:3, 907:20,	$1053: 9,1055: 24$	1027:16, 1032:10,	Geography [2] -	1078:4, 1078:12,
908:3, 908:4,	frustum [2] - 1036:14	1089:10, 1102:3,	1080:8, 1080:13	1078:16, 1079:9,
908:12, 908:15	1071:1	1117:6, 1124:24,	Geological [2] -	1079:12, 1079:13,
93	fulfill [2] - 978:14 978:16	1138:5, 1146:16	1035:22, 1038:3	1080:6, 1083:1
$967: 12,967: 18$	full	837:15, 840:19,	Geospacial [2] -	1089:14, 1102:4,
968:2, 968:17	810:23, 820:23	0:23, 896:13	973:23, 1015:8	1103:13, 1114:6,
1009:15, 1034:15,	837:8, 988:3	22:1	German [1] - 998:5	1115:17, 1141:17,
1036:23, 1036:24,	1078:14	23:12, 1024:10	Germany [3] - 987:21,	146:10, 1151:13,
1037:11, 1037:13,	Fuller [3] - 1043:1	085:7, 1092:10,	1002:1, 1002:21	1152:3
1091:7, 1091:8,	1043:14, 1043:2	1131:10, 1132:	gestures [1] - 896:16	goodchild [3] -
1091:9, 1094:24,	fun [3]-898:1, 970:8	generate [2]-808:2,	Gigabit [3] - 1056:22,	1078:5, 1079:4,
1095:4, 1101:17,	970:13	926:	1057:8, 1058:	1079:24
1103:21, 1113:17,	functionality [2]	generated [2]	gigabytes [1] - 903:14	GOODCHILD [1] -
1113:18, 1123:12,	823:10, 901:10	807:18, 950:19	gigantic [2] - 880:7,	1078:19
1124:1, 1148:3	functions [1] - 897:2	generating [2]	1128:1	Goodchild's [1] -
1148:16, 1148:20	fundamental [2] -	807:13, 807:15	GIS [12] - 1081:13,	1151:18
four-minute [1] -	$955: 10,992: 6$	generation [1] -	1081:16, 1082:5,	GOOGLE [1] - 767:6
	fundamentally [1]	806:1	1082:7, 1088:18,	Google [591] - 769:20,
fourth [2]-80	1096	gentleman [1]	1090:8,	$774: 21,775: 2$
1148:20			127:7, 1127:23,	$775: 4,775: 8,775: 9$
Fox [1] - 1009:22	1032:20, 1043:8	10:	1128:7	775:13, 775:23,
frame [9]-784:2	1051:10	811:24, 812:3	given [21] - 772:22	776:9, 777:15
810:2, 810:8, 916:2	funding [6] - 962	816:22, 816:24,	$781: 12,785: 21,$	777:18, 778:18,
957:12, 958:10, 959:24, 961:16	$968: 4,968: 7$	817:12, 858:2,	786:11, 822:2,	779:8, 779:9,
959:24, 961:16,	968:15, 977:8, 977:9	858:3, 861:10,	835:22, 878:17,	
fram	funny [2] - 1050:24	1, 862:18,	8:13, 914:23,	$\begin{aligned} & 785: 17,788: 16, \\ & 788: 20,788: 22, \end{aligned}$
788:20, 807:2	furnis	$: 2,897: 5,898:$	24:8, 1024:11,	789:20, 791:9
France [1] - 1082:15	1026:15	9:11, 929:12,	24:24, 1025:3,	791:13, 791:16,
Francisco [1] -	Fusion [1] - 952:16	$29: 16,929: 17$	$1055: 11,1067: 14$	793:2, 793:23,
1052:11	future [7]-772:4,	935:6, 938:17,	1070:6, 1072:22,	794:19, 796:20, 796.21, 796.23
Frank [1] - 1078:15	792:10, 850:11,	938:19, 939:15,	1073:14, 1085:20	96:21, 796:23,
FRANK [2] - 1078:16,	894:2, 989:8,	39:20, 939:22,	glad [2] - 1019:13	797:1, 797:7, 798:7, $798 \cdot 12,798 \cdot 24$
	1000:15, 1008:22	$54: 6,$	glass [2] - 1089:22,	799:20, 800:1,
	fuzzy [1] - 1035:3			801:12. 801:13
free [21] - 804:14, 804:20, 804:22,	G's [1] - 1119:18	960:14, 988:17	lobal [1] - 929:20	801:14, 801:15,
	$\begin{aligned} & \text { G-mail [2] - 816:13, } \\ & 889 \cdot 18 \end{aligned}$	960:14,		801:16, 803:1,
840:12, 858:19,		$054 \cdot 12 \quad 054 \cdot 1$		803:4, 803:8
859:5, 859:20,		954:1	1134:7, 1147:13	803:13, 803:15,
			,	804:4, 804:5, 804:6,

(302) 658-6697 FAX (302) 658-8418

0：24，791：23，	honors［1］－1082：6	879：9，879：16，	：19，	immediately $[5]$－
792：1，795：21，	hope $[1]$－1089：16	18，1132：21	22，912：24	892：24，894：18，
803：23，812：13，	hopefully［1］－786：2	IBM［1］－1083：23	914：15，918：15，	20，1087：18，
817：21，819：5，	hotel［3］－970：10，	icing［2］－1004：5，	918：16，918：20	1151：19
819：9，819：24，	1076：10，1076：1	1004：6	919：21，919：2	impact［7］－809
820：5，825：9，	hotels［1］－804：18	Idaho［1］－973：9	1：10，921：	814：1，814：4，
825：11，825：24，	hour［9］－786：21，	idea［19］－890：22，	922：3，922：8，	4：19，815：2
826：19，826：22，	788：2，827：10	905：2，922：2，926：5，	922：13，922：1	16：15，929：1
864：23，871：22，	年：11，927：12，	948：7，	923：5，923：7	impeachment［1］
872：1，872：5，	31：2，1062：24，	1，948：1	959：19，959：20，	1017：23
872：16，872：17，	1063：1，1088：10	：14，953：22	0：1，960：2	implementation［2］－
873：6，873：20，	hourly［1］－827：8	：5，959：5，984：9，	7，966	902：19，942：17
874:14, 874:18, 875:6, 875:9,	hours［7］－827：12，	3：10，1089：6， $90: 6,1103: 19$,	967：6，972：1 1035：12， 10	implemented［3］－ 788：21，023：3，
875：6， 875：15，875：9，18，	827：15，827：16	年：6，1103：19	$\begin{aligned} & \text { 1035:12, 103! } \\ & \text { 1054:7, 1089 } \end{aligned}$	788：21，923：3，938：4 import［1］－805：14
875：23，876：14，	088：2，1088：	ideal［1］－1120：2	90：3，1090：	importance［4］－
876：18，876：19，	house［4］－892：9，	identical ${ }_{[1]}$－770：2	1091：6，1091：	814：18，815：2
877：1，877：3，879：8，	964：9，964：11，	identification ${ }_{[1]}$－	1091：18， 109	2：2， 1110
879：21，881：2，	964：15	997：21	1095：15， 109	important［24］
$\begin{aligned} & 882: 9,882: 22, \\ & \text { 883:17. 884:1, } \end{aligned}$	housekeeping ${ }_{[1]}$	identified［16］	1099：14，1099：16， 1100：6，1104：17，	788：15，799：4，
885：3，885：23，	876：5 Huber［1］－977：14		05：20，1108：1	800：4，806：4，
885：24，886：10，	huge［1］－946：20	7：10，816：10	12：20，1112：24	7：19，813：1
886：13，886：19，	Hughes［1］－958：6	339：9，859：14，	18：7，1120：2，	16：4，897：8，914：6，
886：24，887：2，	hundred［16］－794：2，	0：17，861：15	1121：5，1121：7，	4：11，915：6，
887：12，887：22， 947：6，947：22，	808：14，809：6，	：21，877：10	1121：10，1123：20，	6：19，919：2
947：6，947：22， $949: 3,949: 7$,	810：20，840：22	：18，884：12，	1133：5，1133：9，	922：4，922：14，
949：11，949：13，	846：3，846：16	997：23，1122：8， identifies 55$]$－798：12，	$39: 5,1148: 1$	23：4，926：4，930：9，
974：19，990：7，	845．7， 858.82	802：8，845：10，	1149：4	源：24，1144：23
991：18，992：15，	856．22， 800.3, $961: 12,1004: 18$,	35：6，991：22	imaged［1］－965：1	tantly ${ }_{[1]}$－
992：24，993：5，	9：13，1065：2	identify［15］－792：13，	imagery［10］－891：3，	78：15
993：7，993：14，	1088：11	95：22，806：1，	906：15，909：9	impossible［2］－
998：4，999：13，	hundreds［4］－827：18， 827：20， $863: 4$	810：10，817：3， 818：8，845：13，	959:10, 964:1,	908：6，976：2 impressed［1］
999：15，999：1	946：18	859：19，861：2	4：5，1118：	985：11
1000：4，1009：4，	Hustus［1］－1019：11	77：12，938：2	146：5	pre
1016：8，1017：23， 1019：2，1019：18，	Hyperion［2］－930：19，	10：2，994：10，	images［25］－887：17，	929：1
1019：2，1019：18， 1020：4 1020：13，	931：3	3：11，1142：	903：2，903：20，	improper［5］－782：14，
1020：17，1027：21，	hypothetical［44］－	identifying［2］－	$04: 8,904: 22$	820：6，877：20，
1028：3，1028：6，		$\text { - 962:21, } 1097$	$15,905: 1$	878：1，1017：23
1028：9，1028：19，	770：18，771：5	IIII［1］－1097：3	0：11，910：13	769：21
1028：24，1033：18， 1060：13，1060．23，	771:15, 771:16	illegal［2］－929：23	0：15，912：	imputed［6］－938：8，
1060：13，1060：23，	772：3，772：12，	29：24	8：24，1029：17，	938：10，938：12
1061：1，1061：5， 1061：6，1074：5，	772：22，773：10	illumination ${ }_{[1]}$	35：5，1038：8	938：22，940：3，940：9
1075：1，1076：18，	779：15，779：23，	962：2		IN［2］－767：1，1153：14
1077：20，1078：24，	784：14，787：4，	strate［5］－811：20，	99:4, 1100:16	appropriate［1］－
1142：12，1142：23，			14：7	880：9
1150：8，1152：4	811：20，812：7，	illustrates［2］	maginary［2］－903：5，	$\begin{aligned} & \text { cclined } \\ & 860: 10 \end{aligned}$
honor［1］－997：8	812：18，812：19，	74：15，1091：3	9：11	clude［ 15$]$－ 7
Honor＇s［4］－874：3， 878：11，880：11，	820：4，827：23，	illustration［10］	imagine［4］－983：24，	801：15，801：16，
878：11，880：11， 882：2	828：23，829：2	07：14，907：22	988：11，989：3，	50：5，850：1
HONORABLE ${ }_{[1]}$	829：4，829：15，	8：10，912：2，	imagined［1］－1094：2	9：24，864：
13	81：7，831：18	2：9，915：1，	imaging［2］－923：1，	6:12
honorary［1］－1079：23	840：6，840：8，	916：23， $94646: 24,1093: 9$	1083：4	25：17， 11
honored［ 2 －－1017：21，	848：18，870：14，	image［62］－904：23，	immediate［1］－	1124：21，1140：19
1018：12	870：17，878：8，	906：7．906：17．	945：13	included［9］－817：1，

893:7, 928:5,	852:17, 853:3, 853:7	informative [1] - 850:3	959:7, 961:12,	902:22, 972:1, 979:7
996:23, 998:2,	indirect [3] - 818:6,	informed [1] - 1131:9	970:9, 1047:6,	Intergraph [2] -
1013:7, 1013:11,	818:11, 861:14	infrastructure [1] -	1052:19, 1101:16,	965:17, 966:4
1013:23, 1014:2	indirectly [1] - 817:7	823:20	1113:17, 1120:8	intermediate [2] -
$\begin{aligned} & \text { includes [2] - 884:9, } \\ & \text { 1003:9 } \end{aligned}$	$\begin{aligned} & \text { industries }[2]-957: 2 \text {, } \\ & \text { 1023:16 } \end{aligned}$	$\begin{aligned} & \text { infringe [13] - 883:7, } \\ & \text { 883:9, 1078:9, } \end{aligned}$	$\begin{aligned} & \text { Institute }[4]-958: 17, \\ & 958: 19,1029: 10, \end{aligned}$	1113:12, 1114:12
including [17] -	industry [11] - 891:4,	096:10, 1102:9,	1063:8	900:21, 931:11,
779:19, 781:16,	902:1, 902:7, 902:9,	1103:6, 1103:10,	institutions [1] -	932:14, 1037:1
799:2, 821:21,	945:24, 956:24,	103:11, 1103:15,	1082:23	internally [2]-938:15,
877:14, 1007:11,	974:1, 974:3,	1117:4, 1123:16,	instruction [2] -	957:18
1020:23, 1030:5,	1020:22, 1023:2	1124:12, 1124:13	770:24, 880:1	International [12] -
1048:4, 1050:4,	1063:12	infringed [8]-813:9,	instructions [10] -	1028:11, 1050:11,
1057:19, 1058:7,	inevitably	813:11, 828:3,	776:11, 880:11,	1053:20, 1054:20,
1086:9, 1089:2,	1089:15	47:12, 870:18	883:18, 885:16,	1063:3, 1063:5,
1089:19, 1130:1,	inference [1] - 996:12	70:19, 870:22	885:20, 996:16,	1063:14, 1063:16,
1135:21	inferior ${ }_{[1]}$ - 989:2	007:7	6:22, 998:15	063:19, 1064:10,
inclusion [1] - 993:23	informal [1] - 999:1	infringement [13]-	1097:18, 1150:23	1064:19, 1065:11
inclusive [1] - 1153:10	informally [1] - 999:7	771:6, 822:3,	insufficient [1] -	international [1] -
incorporated [1] -	Information [2] -	28:11, 881:4,	882:16	1041:1
1145:8	1081:22, 1127:12	882:1, 882:22,	integrate [1] - 901:1	internet [3] - 1049:11,
INCORPORATED [1] 767:6	information [79] -	994:5, 994:8, 1062:2, 1084:12,	integrated [2] 804:16, 804:24	1111:23, 1129:15
increase [5] - 777:19,		1097:15, 1102:2,	Integrated [1] -	1086:14, 1097:10
778:22, 779:17,	789:21, 794:6	1102:5	1080:17	interrelationship [1] -
794:20, 809:19	800:6, 800:16,	infringes [4]-883:3,	integration [1] -	814:2
increased [5] -	800:20, 804:10	1084:13, 1084:19,	1121:14	interrupt ${ }^{[1]}$ - 778:9
810:20, 821:11,	804:17, 805:2,	1123:9	Intel [1] - 965:20	interrupted [1] -
856:18, 856:22,	807:1, 807:4,	infringing [1] - 793:12	intelligence [1] -	818:12
857:14	807:17, 813:15	initial ${ }_{[2]}$ - 806:14,	973:22	intervene [1] - 795:11
increasing [2] -	813:17, 814:16,	1089:8	intend [1] - 898:19	interviewed [1] -
857:12, 960:20	821:13, 859:8,	initiated [1] - 1123:24	intended [1] - 898:1	1009:23
incredibly [4]-874:2,	859:13, 860:21,	initiatives [1] - 929:19	intends [1] - 785:17	interviews [1] - 893:15
909:19, 926:20,	861:6, 862:4, 862:8,	innovation [1] -	intent [3]-926:14,	intimately [1] - 958:7
944:11	862:16, 862:19,	1065:17	926:24, 927:24	Intrinsic [10] - 962:15,
incremental [1] -	862:20, 864:4,	Innovation [1] -	intentionally [1] -	962:17, 968:5,
1140:4	865:1, 869:11,	992:14	789	68:7, 968:12,
incubating [1] 1063:11	878:15, 887:18, 889:16, 889:20,	INNOVATIONAL ${ }_{[1]}$ 767:3	interactions [1] - 949:19	$\begin{aligned} & 986: 7,986: 8,996: 7 \\ & 1012: 24,1013: 3 \end{aligned}$
Independence [2]	890:23, 890:24,	innov	949:19 interactiv	1012:24, 1013:3 introduce [5] - 785:18,
892:13, 892:17	891:2, 903:1, 903:9,	1032:23, 1065:24	1056:17	804:22, 888:13,
independent [6] -	903:20, 904:17,	inside [5] - 771:24,	interdiction [1] -	1028:22, 1079:10
772:7, 877:23,	904:20, 904:23,	817:11, 961:6,	960:10	introduced [7]
881:6, 994:4,	905:15, 909:18,	965:20, 966:1	interest [7] - 1005:10,	807:11, 858:14,
1082:24, 1145:19	911:2, 923:10,	inspect [1] - 963:18	1022:19, 1022:20	859:9, 861:18,
independently [4] -	935:11, 937:9,	install [3] - 939:8,	1022:21, 1023:9,	861:21, 900:1, 950:5
980:8, 994:7,	948:12, 970:21,	$980: 2,980: 4$	1089:21, 1143:11	introducing [1] -
1122:2, 1122:7	979:22, 1036:9,	installation [2] -	interested [19] -	899:20
index [2] -904:4,	1037:20, 1038:6,	$939: 13,940: 8$	794:19, 805:11,	introduction [1] -
909:21	1042:3, 1049:10,	installations [3] -	854:1, 854:9, 892:9,	878:9
index.htm [1] -	1051:14, 1073:16,	841:21, 842:18,	911:18, 925:1,	invalid [6]-828:19,
1056:11	1073:23, 1075:10,	983:19	344:16, 944:20,	1078:10, 1084:14,
indicate [4]-838:20,	1078:6, 1081:11,	installs [1] - 939:4	64:17, 972:18,	1085:1, 1085:4,
839:3, 845:17,	1082:19, 1083:5,	instance [4]-854:15,	89:10, 989:12,	1125:4
845:21	1085:8, 1087:9,	942:2, 1086:13,	051:13, 1051:16,	invalidate [2] -
indicated [2] -	1090:20, 1092:15,	1113:7	069:3, 1070:11,	1134:15, 1134:17
1066:16, 1066:22	1097:11, 1100:5,	instances [2] -	1070:14, 1083:24	invalidity [4]-1125:1,
indicating [3] -	1127:4, 1127:11,	1036:2, 1036:10	interesting [5] - 899:8,	1125:13, 1137:9,
856:24, 861:23,	1128:12, 1133:7, $1135 \cdot 24,1136 \cdot 4$	Instead [1] - 844:20	924:20, 926:11,	1137:17
1114:11	1135:24, 1136:4,	instead [11] - 844:22,	1005:18, 1053:1	invented [1] - 884:15
indication [3] -		ant. 7 ane. 17	intorface [4] - 902:1	invention [13] - 771:3,

771:16, 775:13	1059:6			
775:22, 776:9,	issue [41] - 769	94	873	1,
779:8, 824:18	769:20, 769:21	976:17, 976:18,	873:12, 873:16,	19
884:10, 992:11,	769:22, 774:2	979:13	874:10, 874:22,	92
996:17, 1131:20	780:17, 781:6	joining [1] - 892:24	75:1, 875:2, 876:3,	16, 934:3
1132:15, 1132:22	782:2, 783:8, 787:6,	joint [1] - 836:	877:20, 878:10,	37:7, 937:9
inventive [1] - 884:14	$7: 11,787: 13$,	jointly [1] - 1054:19	878:15, 879:6,	37:11, 1006:24,
inventor [3] - 896:5,	792:2, 793:14	JONES [1] - 949:21	880:16, 882:7	126:14
956:7, 1009:13	799:13, 815:19	Jones [30] - 803:11,	882:17, 882:19,	keeping [1] - 785:6
invento	:4, 823:6	833:7, 833:	883:18, 885:15,	keeps [2]-916:21,
1009:15, 1009:18	823:22, 823:24	835:11, 835:14	885:20, 887:4,	1101:8
invest [2] - 803:13,	:6, 873:7	851:7, 851:14	887:5, 887:8,	kept [3] - 930:18,
1127:9	3:19, 877:7	871:6, 871:9	888:14, 890:9,	934:5, 968:15
investigation [5] -	877:17, 879:15	949:15, 950:2	894:15, 900:20,	Kessler [1] - 1009:22
1088:3, 1108:1	880:15, 881:4,	950:7, 953:1	905:3, 907:15,	key [3] - 804:12,
1109:23, 1115:18,	883:4, 884:1,	974:14, 975:2	912:3, 946:6, 947:8,	1113:15, 1138:16
1132:3	993:13, 993:19	989:18, 990:2	947:10, 948:3,	keyhole [1] - 970:12
investment [1] - 803:7	996:4, 1020:2	990:11, 992:16,	963:12, 974:21,	Keyhole [58] - 803:4,
investments [2] -	1054:14, 1085:11,	992:21, 996:10,	975:3, 991:13,	803:8, 803:11,
$823: 15,836: 8$	1093:15, 1095:11,	$1000: 6,1000: 8$	991:15, 992:20,	804:21, 899:16,
investors [1] - 1015:9	1113:15, 1151:11,	1003:5, 1005:24	992:21, 996:16,	899:17, 910:21,
invitation	1151:15	1009:1, 1009:7,	998:15, 999:17, $999 \cdot 23,1019 \cdot 19$	931:8, 931:18,
1023:19	issued [8] - 773:13,	1019:5, 1020:15,	999:23, 1019:19,	$948: 10,952: 4$
involved [9]-821:23,	787:13, 849:13,	1028:3	1020:7, 1033:1	952:5, 952:6,
849:10, 892:22,	10:9,	joystick [1] - 963:15	1041:19, 1060:18,	952:10, 952:12,
901:4, 977:2,	$1125: 7$	Judge [2] - 767:14	1061:4, 1061:8,	$\begin{aligned} & 952: 13,952: 16, \\ & 953: 1,969: 16, \end{aligned}$
1083:3, 1088:11	issues [11] - 846:22	884:5	1065:6, 1071:3,	969:18, 969:19,
involvement [2] -	882:22, 925:21, $930 \cdot 9.992 \cdot 6$	judgment [1] - 885:18	1074:6, 1076:20, 1079:6. 1079:10	969:21, 969:23,
893:1, 983:13	930:9, 992:6,	July [6] - 789:17,	1079:6, 1079:10,	$970: 5,970: 12$
involving [1] - 859:9	993:12, 994:8, 994:13, 996:1	843:2, 844:3,	1085:7, 1087:23,	970:19, 971:18,
IP [1] - 836:24	994:13, 996:1, 999:2 1128:	$931: 22,933: 5$	1085:7, 1087:23,	972:5, 972:12,
iPad [3] - 797:8, 859-10,	item [2] - 809:8,	jumped [1] - 817:16	1094:17, 1096:6,	972:19, 972:21, 973:2, 974:15
859:10, 900:3		June [3] - 804:4	1109:1, 1110:1,	973:2, 974:15,
IPGO [1] - 778:21	916:13 items [8] -	899:2, 1067:15	1116:24, 1118:10,	976:16, 976:18, 976:20, 976:23,
$\begin{aligned} & \text { iPhone [2]-797:8, } \\ & 900: 3 \end{aligned}$	$\begin{aligned} & \text { items [8]-775:1, } \\ & 775: 6,1099: 19, \end{aligned}$	JUROR [1] - 872:5 jurors [2] - 835:9,	1121:19, 1123:22,	$\begin{aligned} & \text { 976:20, 976:23, } \\ & \text { 978:21, 979:2, } \end{aligned}$
iPod [1] - 859:10	1099:20, 1100:7	1077:5	$: 2,1130:$	979:3, 986:11,
$\begin{aligned} & \text { Ira [3] - 1043:2, } \\ & \text { 1043:14, 1043:22 } \end{aligned}$	1120:10	$\begin{gathered} \text { jury [131] - 770:14, } \\ 770: 17,770: 24, \end{gathered}$	1137:16, 1140:21,	986:18, 996:7,
$\begin{aligned} & \text { Iraq [3] - 975:6, 975:7, } \\ & 975: 8 \end{aligned}$	iterations [1] - 770:2 itself [8] - 904:21,	$\begin{aligned} & 772: 17,774: 1, \\ & 776: 11,777: 18, \end{aligned}$	1150:17, 1150:23	$\begin{aligned} & \text { 1012:5, 1012:12, } \\ & \text { 1012:19, 1012:23, } \end{aligned}$
Iris	$1034: 13,1035: 18$	$779: 13,783: 15,$	$\begin{gathered} \text { Jury [5] - 787:21, } \\ 876: 11,999: 24, \end{gathered}$	1013:5, 1013:14, 1013:21. 1013:24.
irrelevant [4]-774:3,	$1055: 16,1085: 10$	$\begin{aligned} & 784: 20,785: 3, \\ & 787: 20.787: 23 \end{aligned}$	1060:19, 1061:9	1014:6, 1015:10,
790:24, 791:23, 825:9	1140:10	$788: 15,795: 12,$	jury's [2] - 873:9,	1067:12, 1099:11,
IS [1] - 1028:24	JACK [1] - 768:4	795:18, 798:6,	1092:11	1099:16
ISS [23] - 1035:11,	Jackson [1] - 982:12	798:14, 798:19,	$\begin{array}{r} \text { justify [3] - 885: } \\ 925: 20,926: 1 \end{array}$	Keyhole's [2] 952.20, 1013:16
1035:12, 1035:16,	809:14, 809:17,	799:3, 799:18, $799 \cdot 24 \quad 800 \cdot 1$	Kansas [23] - 1035:20,	kids [5] - 970:1
$\begin{aligned} & \text { 1035:18, 1035:19, } \\ & \text { 1035:20, 1036:8, } \end{aligned}$	834:3, 1018:17	804:2, 806:1,	1035:22, 1039:13,	971:11, 971:12,
1038:7, 1038:9,	Jeff [2]-977:14,	12:6	1045:11, 1045:13,	982:16
1044:23, 1045:4,	977:23	812:15, 818:16,	$50: 13.1058: 15$	kilometers [1] -
1045:6, 1045:9,	Jersey job [6]	819:20, 820:10,	1058:16, 1060:9,	
1045:10, 1045:12,	957:14, 988:	:13,	1060:11, 1066:10,	772:5, 794:20,
1045:15, 1045:18,	$1030: 4,1042: 13$	860:24, 861:22,	1066:18, 1067:2,	803:7, 808:5,
1050:12, 1060:8,	John [1] - 924:21	862:7, 862:9,	1067:3, 1067:6,	841:11, 841:14,
1139:4, 1139:6	join [1] - 951:23	862:15, 872:3,	1069:5, 1070:2,	854:20, 867:18,
ISS's [2] - 1049:8,	joined [8] - 924:16,	872:4, 872:11	1076:11,	867:20, 880:5,

893:9, 893:23,	1035:14	launched [3] - 934:16,	1033:4, 1033:5,	906:12, 906:14,
897:10, 898:1,	lack [1] - 997:2	979:8, 979:11	1033:8, 1034:3,	908:15, 908:18,
899:12, 902:8,	Lake [1] - 1089:20	law [4]-885:1,	1040:17, 1044:11,	908:22, 909:20,
903:23, 904:15,	land [3] - 961:23,	1102:8, 1131:9,	1046:6, 1065:22,	1113:18, 1113:20,
904:17, 905:22,	1127:14, 1127:15	1136:23	1068:13	1119:7, 1148:17
906:9, 908:7, 911:5,	landing [2]-955:4,	Lawrence [15] -	led [1] - 1088:3	levers [1] - 806:24
911:23, 912:12,	962:5	1035:13, 1045:14,	Lee [4]-843:19,	liability [1] - 994:6
913:2, 913:14,	landscape [1]	1050:13, 1058:14,	843:23, 851:6,	library [2]-895:19,
915:8, 916:11,	1138:12	1060:9, 1060:11,	1003:9	1022:4
$\begin{aligned} & 923: 3,923: 5, \\ & 924: 19,926: 18, \end{aligned}$	language [4]-1117:6,	$\begin{aligned} & \text { 1066:10, 1066:18, } \\ & \text { 1067:2, 1067:3, } \end{aligned}$	$\begin{aligned} & \text { left [23] - 797:7, } \\ & \text { 884:22, 890:17, } \end{aligned}$	$\begin{aligned} & \text { license [42] - 794:10, } \\ & \text { 812:21, 813:5, } \end{aligned}$
$935: 9,952: 17,$	$\begin{aligned} & \text { 1117:21, } \\ & \text { 1138:23 } \end{aligned}$	1067:6, 1069:2	891:22, 912:7,	813:6, 813:13,
963:14, 963:19,	Lank [1]-983:18	070:2, 1076:	917:21, 934:9,	814:21, 837:5,
964:2, 967:8,	laptop [1] - 966:2	1076:11	3:6, 997:23,	7:14, 837:15,
969:24, 973:10,	large [6] - 903:8	lawsuit [3] - 1001:4,	1001:20, 1012:2,	877:19, 837:21,
976:2, 978:2, 982:2,	909:19, 1037:10,	1062:21, 1067:11	16:5, 1017:20,	7:24, 838:7,
982:15, 982:21,	1085:15, 1091:6	lawyer [4] - 842:23,	1018:11, 1018:15,	838:12, 838:18,
990:17, 996:12,	larger [2] - 835:9,	1004:24, 1013:20,	1063:14, 1098:15,	838:21, 838:23,
1001:2, 1002:8,	1103:20	1131:7	1098:16, 1121:20,	839:2, 839:3,
1002:11, 1004:5,	largest [2] - 857:23,	lawyers [7] - 787:24,	1125:15, 1141:23,	839:11, 839:12,
1005:3, 1005:18,	1022:14	999:10, 1062:20,	1142:14, 1148:5	839:14, 839:16,
1008:1, 1009:9,	Larry [1] - 1001:16	1066:5, 1073:3,	left-hand [4]-890:17,	839:19, 840:9,
1017:2, 1050:24,	$\operatorname{LARRY}_{[1]}-767: 22$	1073:6, 1073:1	917:21, 934:9,	840:12, 840:20,
1052:14, 1117:5,	las	layers [1] - 1106:4	1098:15	840:21, 845:18,
1127:13, 1147:2	$784: 22,787: 3,$	lead [2] - 894:22,	leg [2]-823:21,	7:21, 852:21,
kinder [1] - 971:17	790:3,	1120:12	823:22	852:24, 853:15,
kinds [5] - 796:23,	806:10, 841:18	leading [3]-802:17,	legal [6] - 893:16,	54:5, 854:10,
854:22, 903:1,	884:1, 927:9, 938:6,	829:2, 881:1	978:4, 1000:15	854:16, 855:3,
957:1, 982:13	953:6, 978:3,	leads [1] - 1114:19	1014:24, 1133:13,	976:9, 989:7,
King [1] - 767:11	1000:10, 1008:16,	leaf [1] - 1115:6	1137:7	1001:3, 1004:6,
knitted [1] - 1149:6	1016:22, 1046:14,	leaned [1] - 814:16	legally [1] - 824:12	1013:4
knowledge [23] -	1047:7, 1058:9,	learn [6] - 890:4,	legged [1] - 823:12	License [2]-839:6,
778:23, 830:1,	1060:4, 1061:22,	892:4, 926:13	legislators [1] -	855:1
830:20, 855:8,	1062:10, 1116:19,	937:9, 955:2, 1019:7	951:15	licensed [1] - 859:6
855:10, 858:20,	1151:16	learned [4]-821:13,	length [5] - 792:1	licenses [5] - 795:1,
858:21, 863:14,	late [3] - 9	$966: 24,967: 1,$	944:7, 944:11,	838:3, 838:16,
864:15, 866:16,	$998: 15,1052: 8$	1052:20	983:24, 1114:16	855:15
866:20, 867:9,	latitude [4]-959:7,	learning [1] - 891:14	lengths [2] - 926:21,	licensing [25] -
867:17, 868:8,	1047:4, 1047:12,	lease [1] - 973:16	1015:2	802:12, 813:21,
868:13, 868:14,	1047:14	least [15] - 777:10,	lengthy [1] - 1015:7	814:3, 814:24
869:7, 894:5,	latter [1] - 1048:7	1:18, 846:4,	Lennox [1] - 900:2	3:18, 835:16,
959:19, 960:23,	Lau [20]-1028:10,	846:22, 882:16	lenses [2]-950:13,	836:6, 844:22,
1015:19, 1026:22,	1028:11, 1039:6,	6:19, 913:16	950:15	5:16, 855:7
1132:14	1061:13, 1067:4,	980:10, 994:10	less [5] - 840:20	55:18, 858:6,
known [11] - 776:4,	1072:6, 1077:4,	04:18, 1049:15	5:22, 924:6,	8:10, 878:24,
893:13, 979:15,	1077:18, 1125:16,	1055:2, 1077:11,	929:3, 1071:	79:14, 923:24,
1029:10, 1030:12,	1126:4, 1130:10,	1106:18, 1128:1	letter [2] - 848:21,	930:13, 930:16,
1031:12, 1031:19,	1130:24, 1134:21,	leave [9] - 819:19,	1137:2	30:18, 931:13,
1063:7, 1125:5,	1135:1, 1135:12,	821:18, 876:7,	level [23] - 804:9	332:2, 932:21,
1131:3, 1132:9	1137:13,	$9,1019: 2$		933:4, 933:5, 1002:5
knows [1] - 1048:8	1139:13, 1140:20	1066:14, 1068:19	8:3, 915:2,	licensings [1] -
Kosovo [1] - 960:10	LAU [1] - 1028:15	1069:19, 1129:13	8:14, 927:15,	845:10
$\mathbf{K U}$ [1] - 1035:21	Lau's [7] - 1135:3,	Leavenworth [2] -	1004:19, 1037:12,	licensors [1] - 813:7
lab [2]-1045:9,	1136:12, 1136:14	1045:15	1062:16, 1091:11,	lie [1] - 1018:16
1083:17	1138:18, 1147:1,	leaves [2]-877:17,	1098:17, 1098:19,	lies [1] - 1091:20
Lab [2]-1035:19, 1045:9	1147:4, 1149:9	904:15	1100:17, 1102:6,	light [3] - 906:7, 907.2, $907 \cdot 3$
	lau@ai.sri.com [1] -	leaving [4] - 872:11,	1102:8, 1106:12,	907:2, 907:3
Laboratory [1] - 1050:11	$\begin{aligned} & \text { 1053:16 } \\ & \text { launch }[2]-804: 6, \end{aligned}$	$\begin{aligned} & 962: 11,1019: 13, \\ & 1150: 17 \end{aligned}$	$\begin{aligned} & \text { 1106:18, 1107:9, } \\ & 1121: 8,1128: 11 \end{aligned}$	likely $[1]$ - 860:3 likewise ${ }_{[1]}$ - 1077:2
Labs [2] - 1030:18,	972:5	oclore rini- 10.30.17 s Reporting	$\begin{aligned} & \text { levels [12] - 798:12, } \\ & \text { vice } \end{aligned}$	limine [1] - 992:7

limit 3] - 886:6, 886:7,	59:6	1018:1, 1018:2,	LUANN [1] - 768:7	, 84
99:8	tio [1] - 842:18	3:6, 1067	Luann [1] -950:6	22, 8
limitation	[1]		luck [\|] -985:18	
146:13	82:18	21, 1104:	Lud [1] - 1082:13	849:14, 851:4,
$\underset{835: 23}{\text { limited }[2]-776: 16,}$		1117:16, 1114:9,	lump [7] - 794:9,	878:3, 878:5, 87
835:23 ${ }_{\text {limits } 11-865: 2}$	300:22, 841:21,	1114:10, 1137:1	15, 796	878:21, 878:22,
line (10) -846:2,	location-based [1]	looked [131-778:4	852:13, 852:16	889:18, 987:1
848:23, 994:11	841:21	788:17, 791:12,	lump-sum [1] -84	877:14, 988:2
1053:12, 1053:15,	locations []- 1045:2,	792:17, 793:8,	lunch 19 - 786:21,	88:4, 988:5, 9899,
1068:4, 1068:10,	1045:19, 1045:23,	793:15, 793:12	788:2, 990:5,	989:10, 989:24,
1069:5, 1069:12,	1047:10, 1048:4,	793:17, 798:8,	991:10, 991:12,	90:2, 990:12,
1075:9	1059:7, 1139:7	802:4, 811:21,	991:17, 991:24	1002:22, 1003:
lines [5] - 905:18,	Lockheed [1] -950	816:3, 817:14,	992:2, 993:6	1003:11, 1005:19,
946:19, 1074:4,	lod [2]-1115:2,	318:6, 823:19,	Luncheon [1]-993:2	1005:24, 1006:1
1114:11, 1117:7	11	836:16, 912:18,	lunchtime (11) -769:8	1007:24, 1008
link [1] - 1057:1	lod-manager [1] -	956:19, 964:24,	MAC [1]-902:4	1053:18, 1053:19,
linked [1] -775:2	1116:20	973:6, $973: 21$, 98444 $88 \cdot 22$	machine $[2]$-965:	1053:24, 1150:24
list [26]-822:9,	lod-manag	984:4, 988:22,	108	mails [2] - 833:10,
850:24, 911:18,	1115:2	1034:22, 1098:5,	Machinery [1]-	main [2] - 898:22,
911:20, 911:24, 913:13, 913:14,	Lodge [4] - 803:16, 805:23, 810:17,	1116:20, 1130:22 1135:22, 1137:7,	$\begin{aligned} & 1020: 20,1021: \\ & 1021: 9 \end{aligned}$	main [2]-898:22, 946:12
913:18, 914:1,	812:10	1140:14, 1149:22	machiner	maintains
915:5, 915:9,	lodge [1] - 824:8	locking 135] -783:19, 790:3 $792: 12$	1128.1	${ }^{\text {1085:13 }}$
915:10, 915:14, 916:12, 919:10,	logical [1] - 971:24 logo [1] - 1057:17	790:3, 792:12, 794:17, 796:19,	(machines [3]-966:4,	major $[1]$ - 1128:13 majority [1] - 898:9
1003:10, 1080,7,	lognterm [1]-1	800:19, 803:17,		man [2]-971:13,
1110:5, 1110:24,	1014	805:21, 807: 19, 808:16, 809:21,	Waaison [1]-12996	marag
1111:4, 1111:9, 1111:16, 1120:10,	longitude [4] - 959:8,	808:16, 809:21,	Magazine [i] - 902:4	managed (11) -98
$\begin{aligned} & \begin{array}{l} 1111: 16,1120: 10 \\ \text { 1125:9 } \end{array} \end{aligned}$	1047:4, 1047:12, 1047:15	$815: 4,816: 15$ $817: 9,819: 21$	magic (16]-1042:23,	management [2] 966.6, $986 \cdot 24$
listed [4]-1096:19,	look [7] - $772: 4$,	820:22, 841:16	1043:6, 1043:7,	anager [12]-887:15,
1102:12, 1130:8,	775:8, 791:16,	851:14, 861:8,	1043:12, 1043:20,	889:2, 889
	793:11, 794:7,		1044:20, 1045:17,	889:11, 893:5,
listen [1] - 1086:6 literally [1] - 1050:22	804:11, 812:7, 814:8, 814:19,	927:1, 957:24, 979:6, 990:24,	1048:20, 1049:8, 1049:11, 1058:13,	923:17, 956:2, 957:16, 1032:17
litigate [1] - 838:2		1000:7. 100:18,	1049:17, 1058:13 1059:7, 06:9	1033:5, 1052:23,
litigation [2]-	817:2,	1032:21, 1036:15,	Magic [28] - 959	
1030:22, 1031:1 live 9 - $8911.1971: 4$	823:3, 834:12, 834:15, $834: 20$, a	1037:910, 1037.22 1099:17, 1129:7,	1030:10, 103	manage 1115:2
971:7, 1048:17,	834:15, 834:20, 835:8, 44:19,	1133:15, 1133:17	1048:4, 1050	managers [1]-1109:2
1052:111:1058:21, 1059: 10597	846:1, 850:19,	looks [10] - 797:16,	050:15, 1051	managing [2] - 893:9,
1059:4, 1059:7, 1059:20		916:24, 955:10	1056:211 1057:4,	${ }^{894: 23}$
living [4]-950:7	-866:4, 870:5,	987:19, 1010:23,	1057.8,	manu
1011:19, 1012:7,	22923	1011:2, 1092:23 1127.24		1024:20
1079:14	918:15:929:23, $932 \cdot 5.942 \cdot 21$	loop [1] - 1048:21	1059:23, 1060:	apping [1] - 805:12,
LLP $[2]$ - 767:18	932:5, 942:21, 950:20, 955:6	Los [f]-1023:23,	1066:24, 1068:13,	897:3, 1091 1095:7, 109
	961:22, 963:17,		1075:20, 1075:24,	1134:4, 1134:7
local $[4]$-804:17, 807:13, 807:15,	963:20, 983:22,	$\begin{aligned} & \text { 1027:14 } \\ & \text { 1070:9 } \end{aligned}$	1076:16, 1135:6,	Maps [23]-801:13,
807:13, 807:15, 935:10		Iove [1] - 969:4	1146:3	801:16, 816:11,
Lecal [4] - 804:17,	981:13, 988	${ }_{\text {low (51-922:3 }}$	089:22, 1091:23	865:11, 897:8,
805:1, 806:23,	18, 991:4	退:1,1,1054,	mail [52]-816:13,	
	2, 992:4,	lower [1] -915;	5:11, 826:10 86:11, 832:15,	897:77, 897:18,
located [6] -904:24,	:6, 1006:15	922:20, 1037:12,	33:6, 833:11,	8:16,
905:16, 972:16,	21, 1010:11	1037:13, 11197	335:10, 839:23,	900:23, 901:2, 932: 932:9,
1035:19, 1044:23,	711.		8.41-10, 841:14	932:8, 932:9,

792:18, 797:11,	931:21, 934:13,	1027:21, 1028:4,	873:19, 874:13,	152
797:12, 847:2,	951:3	1036:19, 1047:10,	874:18, 875:5,	MS [19] - 940:13,
872:10, 873:2,	months [9] - 779:15,	1048:1, 1072:6,	875:9, 875:14	945:18, 947:5,
926:21, 927:11,	806:13, 806:17,	1077:21, 1092:5	875:18, 875:2	949:10, 950:1,
927:14, 927:15,	965:15, 967:18,	1093:23, 1096:7,	875:23, 876:13,	8, 974:23
1020:24, 1034:14,	976:19, 1018:16,	1098:18, 1101:3,	876:17, 876:19,	975:1, 990:6
1058:23, 1150:10 misleading [1]-874	1137:2	1104:23, 1124:23, 1138:13, 1139:15,	877:2, 881:2, 885:13, 885	990:10, 991:9, $1000 \cdot 3,1000 \cdot 5$
mission [7] - 889:16,	786:22, 787:22,	$\text { 1139:21, } 1144:$	885:24, 886:	1014:23, 1017:22,
890:21, 957:2,	827:3, 827:4, 872:8	1145:1, 1145:1	886:9, 886:1	1019:4, 1020:1,
957:3, 960:6, 960:8,	888:11, 888:12,	1147:23, 1148:	886:18, 886:	11
979:21	940:14, 940:1	mo	88	multis
misspeak [1]-811:22	999:4, 1111:2	4:4, 961:8, 996:6	40:	1067:15
mistake [2]-998:13,	150:13	036:18	945:19, 947:	mult
1019:12	1150:15, 1151:	vies [1] - 954:8	947:20, 947:21	1067:15
mobile [5]-792:17,	1152:10	moving [1] - 970:2	949:3, 949:7,	multi-resolution [1] -
792:21, 900:2,	morning's ${ }_{[1]}-781: 7$	MR [216] - 769:4,	949:13, 991	10
902:22, 927:14	MORRIS ${ }_{[1]}$ - 768:4	769:12, 770:16	992:3, 992:15	ultim
model [8]-805:21,	mosaic [2] - 1099:1,	771:12, 771:19	992:23, 993	1025
805:22, 867:13, 878:24, 879:1,	1149:5 most 188 - 782:14,	$771: 22,772: 10$	993:14, 993:17, 994:18, 994:22	multiple (99-965:20,
878:24, 879:1, 924:24, 1038:5,	most $[18]$ - 782:14, $813: 24,816: 12$,	772:19, 774:6, 774:10, 774:16	$\begin{aligned} & 994: 18,994: 22 \\ & 995: 4,995: 23, \end{aligned}$	965:21, 965:24 1029:17, 1044
1148:22	3:8, 844:13,	774:21, 775:14	997	045:1, 1045:23
models [1] - 892:14	894:3, 897:7, 900:9,	776:6, 776:22,	997	1048:4, 1060:8
modern [1] - 982:5	908:24, 915:6,	7777:9, 777:14	7:16, 997	Multiple ${ }_{[1]}$ - 1050:11
moment [14]-780:1,	:11, 950:13	778:3, 778:7,	98:8	useum [1] -
781:24, 786:2,	956:13, 975:7,	16	998:10, 998:1	music [2] - 983:8,
789:14, 792:4,	1002:6, 1022:22	779:6, 780:4, 780:8,	998:13, 999:12,	983
820:2, 820:7, 830:6,	1115:11	780:16, 780:22,	999:14, 999:1	mus
847:1, 876:23,	mostly ${ }_{[1]}$ - 973:4	782:11, 783:16,	999:20, 1009	110
998:19, 1018:2,	motion [17] - 774:24,	783:24, 784:16,	1009:6, 1016	1105:3, 1117:23
1068:6, 1122:3	872:18, 872:20,	784:21, 785:4,	101	mute [1] - 975:2
Monday [4] - 787:11,	872:22, 873:14,	$\begin{aligned} & 785: 10,785: 15, \\ & 786.03787 \cdot 0 \end{aligned}$	1018:4, 1019:1, 1019:15, 1019:17	utual $[1]$ - 1001:9
844:6, 871:3, 888:21 monetization $[5]$ -	877:6, 880:24, 881:1, 884:4, 885	$\begin{aligned} & \text { 786:23, 787:2 } \\ & \text { 787:18, 788:1 } \end{aligned}$	$\begin{aligned} & \text { 1019:15, 1019:17, } \\ & \text { 1020:3, 1020:12, } \end{aligned}$	MYERS ${ }_{[1]}-768: 6$
$789: 3,806: 24$	885:9, 885:10,	8:12, 789:6	20:17, 1027:20,	ame [27] - 888:2,
年:1, 868:22,	5:14, 885:18,	789:13, 789:16,	1027:24, 1028	931:6, 935:1, 935
928:22	885:21, 992:7,	790:1, 790:7, 790:8,	1028:5, 1028:8,	70:15
monetize [3$]-864: 16$,	:17	790:9, 790:23,	1028:19, 1028:23,	974:12, 976:8,
925:14, 927:20	motions [2]-873:12,	791:22, 791:24 792:6, 795:14	1029:3, 1033:18, 1033:23, 1034:16,	1021:3, 1028:24,
monetized [1] 788:22	motivation [1] - 807:9	795:19, 795:21	1034:21, 1060:12,	031:14, 1031:15
monetizing [7] -	Mountain [2]-804:5,	796:4, 803:23,	1060:14, 1060:22,	1033:3, 1052:
774:23, 789:20,	981:17	803:24, 812:13,	1060:24, 1061:5,	1053:3, 1054:
807:4, 864:18,	mountain [1] - 961:21	812:14, 817:21,	1061:6, 1061:10,	1054:15, 1054:22,
869:3, 869:11, 926:3	mountains [2] - 955:8,	819:4, 819:7,	1061:12, 1068:7,	1055:5, 1055:7,
money [16] - 775:17,	1038:5	$\begin{aligned} & \text { 819:11, 819:23, } \\ & 820: 1,820: 3,820: 9 \end{aligned}$	1074:5, 1074:11, 1074:16, 1074:19	1078:14
863:19, 863:22, 867:2, 924:17,	mouse [1] - 963:16 mouthful [2]-	825:8, 825:11,	1074:24, 1075:4,	named [9] - 779:19, 896:5, 910:22,
928:11, 928:24,	1031:21, 1032:5	825:17, 825:21,	1075:7, 1075:8,	937:22, 956:7,
967:17, 967:21,	move [43] - 769:23,	825:24, 826:3,	1075:17, 1075:19,	977:14, 983:18,
968:9, 968:23,	773:2, 785:3, 790:4,	826:7, 826:18,	1076:17, 1077:1,	1009:15, 1029:21
972:11, 978:12,	790:5, 810:16,	826:21, 826:24, 827.2 835:4,		names [10] - 965:3,
1001:18, 1001:19,	812:10, 875:20, 877:3, 877:4,	827:2, 835:4, 843:15, 843:17,	1077:24, 1078:3, 1078:23, 1079:3,	1054:4, 1054:9
1006:15 monitor $[3]-922: 7$,	877:3, 877:4, 896:18, 922:1	843:15, 843:17, 848:5, 848:7, 856:8,	$\begin{aligned} & \text { 1078:23, 1079:3, } \\ & \text { 1122:18, 1123:1, } \end{aligned}$	1054:14, 1066:21, 1077:10, 1077:14
monitor [3]-922:7, $929: 22,930: 7$	$\begin{aligned} & 896: 18,922: 1, \\ & 929: 10,932: 4, \end{aligned}$	856:11, 864:23,	1141:8, 1142:13,	1077:10, 1077:14
month [8]-807:11,	8, 963:22,	869:13, 869:1	24, 1144	1126:13
808:12, 808:14,	984:10, 984:13,	871:21,	1151.15, 115	narrative [1] - 996:5
809:6, 931:7,	984:15, 1017:3,	872:15, 87	1151:15, 115	narrow ${ }_{[1]}$ - 1116:11

NASA [1] - 971:1	878:14, 878:20,	878:8, 879:10,	918:10, 931:7,	noded [1] - 907:20
Nation's [1] - 902:3	879:22, 880:13	879:16, 880:18,	949:14, 955:5	nodes [56] - 905:13,
National [8] - 960:11,	near [4] - 834:19,	1002:23	961:8, 961:9	905:15, 906:4,
960:14, 973:23,	848:17, 972:23,	negotiations [4] -	973:10, 986:11	906:5, 906:18,
1015:8, 1030:17	1040:	829:9, 829:12	997:14, 1002:17,	906:21, 907:2,
1035:13, 1035:19,	necessarily [5]	829:21, 842:	1005:17, 1008:14,	907:3, 908:2,
1082:9	794:18, 865:12,	Neil [1] - 963:10	1020:18, 1028:9,	908:12, 908:16,
national [1] - 960:12	917:16, 919:16,	network [27] - 803:14,	1037:12, 1037:13,	909:5, 909:9,
natural [2] - 966:21,	1107:10	807:5, 864:5,	1045:24, 1054:13,	909:20, 911:7,
1150:9	necessary [5] -	915:19, 916:3,	1058:2, 1069:12,	911:18, 912:18,
navigate [1] - 896:18	1004:9, 1102:10,	916:4, 916:6,	1078:4, 1083:9,	913:11, 913:12,
$\begin{gathered} \text { navy [2] - 966:16, } \\ \text { a67.17 } \end{gathered}$	$1120: 1,1144: 22$ 1146:22	917:14, 1029:17 1035:4, 1035:5	1090:9, 1096:5,	913:15, 913:18, 914:6, 914:10
	need [34] - 769:2,	$042: 3,1044$	$1098: 15,1101:$	$14: 11,915: 1$
	781:13, 782:23	1044:24, 1048:19	1104:21, 1104:24,	915:2, 917:3,
778:10, 778:16,	785:13, 787:14,	1048:20, 1049:9,	1110:23, 1111:15,	918:12, 918:14,
782:3, 782:12,	816:22, 818:2,	1049:11, 1050:13	1112:12, 1116:3,	918:23, 918:24,
782:19, 783:6,	822:2, 822:4, 860:9	1050:15, 1051:15	1118:21, 1120:24,	919:6, 919:7, 919:9,
784:12	875:5, 886:17,	1059:7, 1059:9,	1122:12, 1125:8,	919:14, 919:18,
Nawraocki's [2] -	886:21, 911:22,	1071:14, 1129:13	1137:14, 1140:24,	919:19, 920:5,
777:4, 784:3	912:1, 918:20,	1139:8, 1139:9	1141:14, 1144:7,	920:9, 920:14,
Nawrocki [69] - 773:3,	$\begin{aligned} & 965: 24,977: 10, \\ & 078 \cdot 17 \text { 001.17 } \end{aligned}$	networking [3] 959•3, 960:17	1144:15 NGA [2] - 960:14	$\begin{aligned} & \text { 920:18, 920:19, } \\ & 920: 24.921: 3 . \end{aligned}$
773:14, 773:23,	978:12, 991:17,	$\begin{aligned} & \text { 959:3, 960:17, } \\ & 1070: 15 \end{aligned}$	NGA [2]-960:14, 960:19	$921: 7,1098: 23$
$774: 8,781: 9$	4:9, 996:11,	1070:15	NGO's [1	105:11, 1107:4,
$788: 3,788: 5,$	020:12, 1040:2	$\text { 1129:17, } 1129: 2$	$\text { nice }[15]-870: 1$	1107:5, 1110:14
788:13, 790:12,	1075:2, 1099:24,	never [14] - 838:19	870:14, 870:24,	1113:13, 1114:12,
793:4, 796:5,	1100:2, 1134:12	839:1, 855:6,	892:17, 921:11	1114:20, 1115:11
798:22, 802:22,	1151:6, 1151:9,	17, 855:2	933:24, 985:17	Nokia [4] - 853:19,
803:19, 804:2,	1151:12	856:1, 856:5, 868:9,	002:11, 1002:13,	853:24, 854:5, 854:8
805:8, 812:5,	needed [11] - 796:12	882:15, 940:24,	1003:21, 1004:1	non [17]-803:21,
820:11, 821:6,	7:7, 910:3	941:4, 1001:15	04:10, 1010:21,	39:12, 839:15,
821:12, 825:23,	962:21, 965:21	1008:13, 1113:7	1042:16, 1150:16	839:19, 840:2,
826:2, 826:8, 827:3,	6:5	new [15] - 782:18	nicer [1] - 971:17	840:9, 840:17,
827:22, 830:12,	12, 1031:22	2:3, 891:24	NICHOLS [1] - 768:4	40:20, 844:23
831:16, 833:22,	1099:12, 1129:14	94:1, 894:3	night [3] - 788:14	958:3, 995:8,
836:24, 838:19,	needs [2] - 873:13,	66:17, 968:21	964:24, 1150:1	95:11, 996:4
839:10, 840:6,	929:14	69:13, 985:21,	Nile [1] - 974:11	006:14, 1065:12,
842:1, 842:5,	negotiate [1] - 812:21	5:23, 998:21,	nine [4]-817:16,	1097:15, 1102:2
842:21, 844:16,	negotiated [3] - 772:5,	98:22, 1022:1,	917:1, 976:19,	non-activity [1] -
845:6, 848:11,	830:24, 854:23	1031:22, 1146:17	1070:4	995:8
851:12, 853:2,	negotiation [41] -	New [2] - 1089:19,	Nintendo [1] - 968:14	non-confidential [1]
854:7, 854:19,	769:3, 769:17,	1153:2	NO65 [1] - 1044:16	803:21
855:12, 856:13,	770:7, 770:13	news [1] - 974:	Nobel [1] - 1082:17	non-copying [1] -
856:16, 859:15,	770:18, 771:5,	next [75] - 784:5,	nobody [4] - 830:17,	996:4
860:24, 862:6,	771:15, 772:3	790:4, 790:6	926:22, 941:9,	non-exclusive [8]-
862:12, 863:10,	772:12, 772:23,	797:10, 804:12,	1025:24	839:12, 839:15,
863:24, 864:7,	773:10, 779:16,	805:9, 805:10,	node [25] - 905:7,	839:19, 840:2,
864:19, 866:6,	779:23, 784:14,	807:21, 807:23,	906:4, 906:6,	840:9, 840:17,
867:3, 867:24,	795:9, 802:18,	808:22, 809:8,	906:16, 906:17,	840:20, 844:23
869:14, 869:17,	802:24, 811:21,	809:14, 809:17,	906:20, 906:21,	non-grainy [1] -
873:22, 874:5,	812:7, 812:18,	810:10, 821:16,	906:22, 906:24,	1065:12
874:19, 875:1,	812:19, 820:5,	822:23, 843:22,	907:4, 908:13,	non-infringement [2]
876:13, 876:23,	27:23, 828:24,	844:19, 850:2,	908:24, 909:2,	- 1097:15, 1102:2
877:9, 879:4, 879:8	829:4, 829:15,	850:8, 850:19,	912:19, 919:21	non-practicing [1] -
Nawrocki's [12] -	831:8, 831:18,	851:8, 852:20,	920:9, 1100:19,	995:11
872:23, 873:8,	831:20, 839:18,	57:1, 906:2, 906:5,	1101:13, 1104:15,	non-starter [1] -
873:20, 874:4,	839:22, 840:1,	07:23, 914:9,	1107:3, 1107:4,	1006:14
877:5, 877:8,	840:6, 840:8	5:17, 917:6,	1110:4, 1115:5,	none [4] - 783:17,
877:21, 877:24,	848:18, 870:14,	17:7, 918:1	118:14	867:9, 983:15,

$$
\begin{aligned}
& 922: 14,993: 22 \\
& 999: 7,1000: 15 \\
& \text { 1112:3, 1115:9 } \\
& 1115: 12,1149: 2
\end{aligned}
$$

possibly [1] - 1054:2 post [3]-998:17,
1150:21, 1151:1
poster [1] - 974:4 posterity [2] 1064:15, 1064:23 posture [1] - 1005:11 postured [1] - 1016:4 potential [5] - 802:3,
835:23, 849:24, 850:7, 1129:20
potentially [6] - 838:3,
840:15, 914:20, 920:18, 920:19, 922:20
Powell [1] - 970:14 powers [2] - 961:11, 961:12
practice [5] - 1007:16,
1026:14, 1027:16,
1122:15, 1146:20
practiced [1] - 992:11
practices [1] -
1020:21
practicing [3] 993:10, 993:11, 995:11
practitioners [1] -
1022:10
pre [3]-787:9,
787:12, 787:14
pre-trial $[3]-787: 9$,
787:12, 787:14
preamble [3] -
1137:23, 1138:2, 1138:4
preceded [3] - 849:3, 849:6
preceding [2] -
1072:18, 1072:19
precise [2] - 812:1,
812:4
precisely [1] - 789:8
precision [2] -
1047:17, 1147:14
precursor [1] -
1087:16
precursors [1] 1085:10
predecessors [2] 865:15, 865:17
predict [1] - 1036:2 predictable [1] 1111:24 prefer [2] - 873:9, 873:10
preferred [1] - 784:2 prejudice [3] - 785:21, 786:9, 880:5 prejudicial [6] 772:13, 773:19, 878:12, 879:7, 880:10, 994:3
Premise [1] - 931:8
premise [1] - 931:18
prep [4] - 936:22,
937:1, 937:10, 937:24
preparation [1] 851:16
prepare [4] - 946:9, 1009:18, 1038:20, 1104:3
prepared [13] -
785:16, 811:19, 905:1, 1005:2, 1069:9, 1072:12, 1072:17, 1084:9, 1085:23, 1089:8, 1107:14, 1118:5, 1137:15
preparing [4] -
780:24, 1038:21, 1080:1, 1108:22
presence [1] - 783:15
present [11] - 770:22,
783:13, 862:15,
884:17, 903:2, 903:20, 954:10, 964:22, 1048:15, 1058:19, 1092:17
presentation [4] 833:15, 941:13, 946:10, 1146:2
presentations [1] 1087:20
presented [12] -
776:24, 779:12,
812:6, 862:7, 862:9, 877:15, 881:10, 881:13, 881:14, 949:20, 1068:23, 1085:24
presenting [3] -
1087:7, 1087:23, 1088:4
presents [1] - 887:17
preserve [2] - 786:24, 1064:22
preserved [1] -
1065:11
President [1] - 982:11
president [1] - 982:12
press [4] - 804:4,
829:18, 893:12,
893:14
pretend [1] - 880:7 pretty [13] - 784:23, 834:18, 837:17, 857:19, 894:2, 931:6, 946:12, 956:23, 968:19, 970:13, 982:4, 982:10, 1138:5
previous [5]-861:17, 865:23, 1055:19, 1057:16, 1147:5 previously [6] - 800:7, 801:9, 851:4, 884:4, 990:18, 1028:10 price [6] - 798:12, 834:6, 835:19, 847:17, 1004:19, 1006:4
primarily [3] - 903:5, 911:8, 1027:15
primary [9] - 1125:9, 1125:12, 1125:17, 1125:19, 1125:21, 1126:2, 1126:7, 1130:7, 1134:17 principle [1] - 1093:7 printed [2] - 1055:14, 1131:21
printouts [1] -
1057:22
prioritization [5] -
1111:12, 1111:16, 1114:19, 1115:11, 1121:1
prioritize [4] - 914:8, 920:4, 1110:24, 1111:4
prioritized [1] - 915:11
prioritizing [1] - 920:5
privacy [1] - 861:5
Prix [1] - 1082:15
Prize [1] - 1082:17
Pro [23] - 805:15, 810:20, 811:1, 817:22, 856:17, 856:21, 857:1, 857:7, 857:8, 857:18, 857:22, 858:5, 858:11, 859:7, 861:24, 866:18, 866:22, 867:4, 867:15, 867:18, 868:2, 868:4, 924:1
problem [17] - 926:8,
927:23, 930:2,
968:8, 980:2, 994:1, 994:2, 1102:19, 1128:14, 1129:2, 1129:6. 1129:7.
1129:11, 1129:21,
1129:23, 1130:5,
1147:16
problems [9] - 951:17
958:4, 967:2,
977:18, 1006:16,
1099:8, 1128:3,
$1128: 6,1128: 7$
procedure [1] - 948:2
proceed [10] - 781:20,
786:6, 788:10, 887:9, 1028:20, 1060:14, 1068:8, 1078:23, 1084:4, 1120:13
proceeding [5] -
787:8, 799:8,
799:13, 1025:19,
1026:5
proceedings [7] -
787:6, 1024:12,
1039:12, 1044:3,
1044:13, 1044:14, 1055:14
process [40] - 911:19,
912:3, 913:9,
915:13, 916:8,
920:17, 1042:5,
1042:12, 1091:13,
1092:24, 1094:22,
1095:9, 1100:18,
1107:2, 1107:8,
1108:12, 1108:19,
1109:22, 1109:24,
1110:16, 1111:12,
1112:18, 1113:6,
1113:9, 1114:19,
1116:12, 1117:8,
1117:11, 1119:14,
1119:18, 1119:23,
1120:21, 1121:4,
1121:6, 1121:7,
1121:24, 1128:5,
1128:22, 1130:4
processed [1] -
952:17
processes [3] -
1112:8, 1121:16,
1122:6
processing [5] -
895:1, 895:15,
1123:3, 1133:5,
1133:9
processor [1] - 966:9
processors [2] -
965:20, 966:10
produce [4] - 898:23,
1009:21, 1022:10,
1117:12
produced [9] - 797:2,

815:6, 816:2, 860:20, 861:2, 960:18, 1010:2, 1024:12, 1055:18 product [92]-770:5,
773:13, 788:23, 804:22, 807:12, 858:18, 860:4, 863:4, 863:19, 863:23, 864:2, 866:24, 882:4, 883:11, 887:16, 889:2, 889:8, 889:10, 893:5, 893:7, 893:8,
893:14, 893:18, 894:3, 894:5, 894:9, 896:22, 896:24, 897:6, 897:13, 898:2, 898:5, 898:17, 898:18, 898:21, 898:22,
899:7, 900:19,
923:17, 923:20,
924:2, 924:3, 924:4,
924:24, 925:9,
925:20, 925:23,
926:22, 927:16,
927:17, 927:22,
928:1, 929:8, 930:6,
932:11, 932:15,
932:19, 933:21,
939:7, 940:6, 940:8,
945:3, 945:6,
945:15, 946:14,
946:17, 948:11,
952:16, 952:20,
955:24, 959:3,
971:19, 972:9,
972:21, 976:10,
979:8, 979:14,
979:16, 979:19,
981:7, 1087:22,
1088:21, 1098:8,
1098:12, 1099:4,
1109:2, 1112:13,
1114:23, 1115:15,
1123:14, 1123:16
production [1] -
1022:2
products [75] - 773:6,
773:17, 811:1,
857:21, 865:14,
865:21, 866:23,
867:10, 867:14,
882:24, 883:1,
883:2, 883:14,
887:20, 889:6,
889:18, 889:19,
897:3, 897:5, 897:9,
899:22, 901:6,

901:14, 901:16,	1031:19, 1032:7,	952:7, 961:17,	818:14, 869:21,	1067:22, 1075:4,
907:10, 907:14,	1032:18, 1035:21,	1035:15, 1051:18,	963:17, 989:14,	1080:4, 1091:17,
907:19, 908:20,	1036:14, 1042:23,	1056:1, 1056:9	1039:8, 1042:20,	1093:10, 1110:4,
908:24, 909:7,	1042:24, 1043:8,	1058:7	1045:22, 1046:2,	1111:8, 1117:5,
909:14, 910:1,	1043:10, 1045:17,	provides [1] - 910:23	1049:10, 1053:7,	1136:13
910:14, 913:4,	1051:10, 1056:19,	providing [1] - 883:8	1055:22	putting [5] - 789:17,
918:22, 919:5,	1068:15, 1135:5,	PTX ${ }_{\text {[14] - 832:7, }}$	pulled [2]-926:1,	925:19, 937:5,
919:14, 920:8,	1135:7, 1135:8	832:8, 832:9	1050:12	996:15, 1027:17
920:13, 920:23,	projection [1] - 821:6	832:12, 834:22,	pulling [1] - 1035:5	pyramid [4] - 1037:3,
921:18, 924:8,	projections [12] -	1086:24, 1122:20,	pun [1] - 1062:17	1037:5, 1037:6,
924:15, 925:11,	773:4, 773:15,	1122:21, 1122:23	purchase [16] - 834:6,	1054:5
927:13, 927:14,	776:19, 776:24,	PTX-001 [1] - 1148:15	836:5, 836:7,	quad [2] - 907:22,
928:13, 934:16,	777:2, 778:1, 779:2,	PTX-0075 [1] - 1101:4	836:11, 837:4,	912:10
938:2, 939:24,	779:22, 786:17,	PTX-055 [1] - 800:8	837:13, 837:15,	quadrant [1] - 1148:1
940:9, 944:14,	792:1, 793:5, 893:12	PTX-1 [1] - 1142:19	837:18, 837:20,	Quadtree [5] - 967:8,
945:13, 945:16,	projectors [1] - 1002:9	PTXs [1] - 832:12	838:5, 838:17,	1037:1, 1041:11,
946:7, 947:2,	projects [6] - 954:9,	Public [1] - 1153:9	847:16, 849:18,	1041:13, 1041:21
952:10, 952:11,	958:9, 958:11,	public [17] - 819:19,	$850: 13,850: 14,$	quadtree [15] -
$957: 18,958: 16$, $979 \cdot 18,1096: 12$	958:14, 1056:16,	893:14, 930:8,	1014:16	907:24, 908:10,
$\begin{aligned} & 979: 18,1096: 12, \\ & \text { 1096:16, 1097:5, } \end{aligned}$	1083:3	970:7, 982:17,	purchased [5] - 803:12, 938:14	$961: 13,1088: 24$ 1091:4. 1091:19.
1100:15, 1102:10,	promise [1] - 978:11 promises [1] - 978:10	1023:18, 1023:20,	$\begin{aligned} & 803: 12,938: 14, \\ & \text { 1012:18. 1014:6. } \end{aligned}$	1091:4, 1091:19,
1109:12, 1109:16,	promises [1] - 978:10	1032:10, 1032:20,	$\begin{aligned} & \text { 1012:18, 1014:6, } \\ & 1087: 18 \end{aligned}$	1098:7, 1103:19,
1114:18, 1116:6,	proper [1] - 793:9	$1131: 22,1132: 14$	purchases [1] -	1143:9, 1148:1,
1116:14, 1117:17,	properties [2] -	1135:1, 1135:13,	837:12	1148:3, 1148:18
$1122: 10,1122: 15$, $1123: 9$	807:13, 937:13	1135:17	purchasing [3] -	quadtrees [3] -
$\begin{aligned} & \text { 1123:9 } \\ & \text { professional [1] - } \end{aligned}$	property [2] - 801:21,	publically [1] - 884:20	838:22, 839:4,	907:19, 1098:6,
1022:8	929:4	publication [13] -	849:14	1098:11 quality [3] - 973
professionally [1] - 1081:9	821:20, 859:19,	1041:2, 1042:22	$906: 18,906: 20$ $906: 21,906: 22$	$1048: 24,1049: 1$
	$860: 18,1113: 23$	1046:6, 1125:21,	906:21, 906:22	quarters [2] - 907:7,
	proposal [15] -	1125:22, 1126:8,	purpose [13] - 772:22,	1108:6
$1080: 13,1080: 23$	833:12, 833:13,	1131:21, 1133:16,	820:6, 829:3, 840:7,	questioning [1] -
Professor [2] -				
1079:20, 1080	841:2, 850:13,	pu	1045:21, 1069:13	782:22, 782:23,
proffered [1] - 769:7	852:6, 873:21,	1011:3, 1020:19	1069:16, 1109:9,	782:24, 826:18,
profit [2] - 1022:7,	4:6	1020:22, 1021:16,	1115:10	869:14, 871:21,
1029:9	937:20, 937:23,	1021:18, 1021:21,	purposes [13] - 801:2,	871:24, 872:3,
program [19] - 820:16,	938:3	1021:24, 1022:15,	802:6, 828:8,	872:4, 873:9,
939:6, 952:13,	proposals [1] - 834:9	1040:12, 1129:19,	829:16, 838:11,	873:11, 873:16,
959:1, 965:10,	propose [2] - 996:23,	1135:4, 1138:8,	839:17, 839:21,	874:14, 875:1,
965:14, 965:23,	997:1	1139:2	840:1, 1096:14,	875:2, 897:21,
966:13, 966:20,	proposing [1] -	publish [6] - 959:9,	1101:15, 1116:5,	45:18, 947:5,
967:6, 967:14,	849:22	959:22, 974:21,	1130:21, 1137:15	947:8, 947:11,
970:7, 985:23,	protection	32:12, 1033:21,	push [1] - 972:2	48:3, 948:4,
989:6, 1001:2,	884:24	1040:21	put [37] - 774:1, 779:9,	48:17, 992:10,
1021:24, 1023:3,	protective [1] - 989:8	published [20]	786:8, 789:21,	993:9, 993:22,
1024:14, 1042:6	prototyped [1] -	1034:4, 1039:4	790:1, 803:16,	994:1, 1009:2,
Program [1] - 902:3	959:14	1040:12, 1040:17	808:10, 818:10,	1019:1, 1019:16,
$\begin{aligned} & \text { programmer [1] - } \\ & 965: 9 \end{aligned}$	proud [4] - 956:13,	1040:20, 1043:16,	$\begin{aligned} & 903: 12, ~ 915: 5, \\ & 915: 8.928: 15 \end{aligned}$	$\begin{aligned} & \text { 1019:20, 1063:3, } \\ & \text { 1071:6, 1071:8, } \end{aligned}$
programming [1] -	$\begin{aligned} & 983: 3,1064: 14, \\ & 1064: 22 \end{aligned}$	1046:11, 1050:4	930:21, 934:7,	1071:10, 1076:18,
948:13	proved [1] - 802:6	1060:3, 1081:15,	936:7, 960:14,	1076:20, 1076:21,
programs [5] - 970:3,	provide [4] - 861:6,	1081:17, 1082:3,	970:22, 974:23,	1077:17, 1131:7
$\begin{aligned} & 970: 4,1022: 11 \\ & \text { 1022:14, 1023:1 } \end{aligned}$	$883: 22,887: 18$	$\begin{aligned} & 1082: 4,1083: 16 \\ & 1085: 16,1097: 12 \end{aligned}$	$\begin{aligned} & 976: 11,989: 17, \\ & 996: 9,1003: 1, \end{aligned}$	$\begin{gathered} \text { quick }[3]-872: 6, \\ 876: 9,922: 3 \end{gathered}$
project [21] - 887:14,	1094:6	85:16, 1097:1		
929:21, 958:17,			031:23, 1051:11,	quickly [9] - 908:1,
958:23, 1030:10,	901:10, 901:23	806:8, 81	1055:21, 1058:14,	

reflects [1]-821:21	884:2, 1088:21,	remember [45] -	1122:16, 1123:22,	916:4, 917:8,
refrigerators [1] -	1094:7, 1115	791:10, 8	1123:23, 1141:2	919:20, 1036:8,
982:6	1118:11, 1119:19,	825:6, 833:8, 833:9,	replaced [1] - 891:21	050:9, 1093:12,
regard [9] - 771:1,	1120:8	833:13, 843:5	report [19] - 782:16,	1094:4, 1099:16,
785:24, 815:23	re	17, 859:13	782:20, 783:7,	1100:22, 1102:20,
822:14, 871:	1086:13, 1097:4	869:19, 869:24	44:8, 787:2, 787:5,	1103:16, 1106:6
961:3, 1014:8	1115:19, 1124:8	79:10	26:4,	1106:14, 1106:16,
1089:6, 1125:3	1148:6, 1148:21	987:5, 987:15	854:7, 874:1, 874:2,	108:1, 1108:5,
regarded [1] - 823:9	relationship [7] -	991:13, 1002:22,	878:7, 878:14,	1115:8, 1115:24
regarding [16] - 773:4,	775:5, 83	05:12, 1008:19	:20, 879:11,	1117:2, 1117:2?
835:15, 848	905:20, 905:23	009:11, 1009:12	943:19, 1114:22	118:15, 1142:
848:22, 848:24	906:10, 971:21,	:16, 1011:9,	reporter [1] - 995:1	requested [26] -
849:16, 853:11	1023:7	1012:5, 1012:20,	REPORTER [1] -	912:19, 917:2,
862:16, 874:3,	relative [3] - 916:7	$12: 24,1013: 18$	1153:	918:11, 918:24,
1044:9, 1097:15,	928:12, 944:13	1014:7, 1014:14, 1015:4, 1015:7	Reporter [2] - 1153:8	919:6, 919:8, 919:9, 919:10, 920:9
1097:22, 1137:8,	relatively [1] - 857:20 release [5]-804:4	1016:22, 1016:24	reports [4] - 844:12, 1085.23, 1086.2	$920: 10,920: 15$
1137:16, 1138:15 1145:9	release [5] - 804:4 829:18, 898:24	17:4, 1040:24,	1085:23, 1086:2,	$20: 24,921: 3$
regards [1] - 815:6	899:4, 900:11	3:18, 1066:20	represent [24] - 811:3,	50:10, 1103:24,
Registered [1] -	released [10] - 803:1	73:1, 1075:14,	865:23, 905:11,	105:3, 1110:20,
1153:7	804:19, 806:13,	:13	906:14, 907:6,	11:20, 1112:14
regi	829:18,	:17, 1110:3,	909:1, 915:2,	1112:23, 1113:8,
1025:8, 1025:10	899:6, 900:10	$\begin{array}{r} 1111: 18,1113: 1 \\ \text { remind }[4]-1096: 6 \end{array}$	931:12, 934:22,	$\begin{aligned} & \text { 114:8, 1118:8, } \\ & \text { 120:18, 1121:8 } \end{aligned}$
reg	$\begin{aligned} & 900: 13,921: 21 \\ & 942: 8 \end{aligned}$	$1110: 1,1125: 1$	18	requesting [15] -
894:8	relevance [3] - 776:5,	1150:13	1103:16, 1106:s	915:16, 915:18,
rehearsal [2] - 957:3,	776:6, 777:24	remote [4]-959:2	06:15, 1106:16,	918:6, 1094:24,
60:8	relevant [31] - 770:20,	, 1089:	08:2, 1108:5	00:1, 1103:22,
reissues	772:8, 780:3,	1129:13	15:24, 1117:3	104:24, 1105:15,
reiter	786:17, 786:18	remotely [1] - 1129:	1117:24, 1149:11	10:7, 1111:17,
relate [17] - 823:4,	808:18, 815:7	removed [1] - 885:20	representation [12] -	1113:2, 1119:1,
823:6, 842:3,	831:19, 854:21 885:6, $911 \cdot 8$	$\underset{931: 20}{\text { renaming [2] - 931:16, }}$	867:7, 881:19, $1037 \cdot 2 \quad 1041: 10$	1121:2, 1140:1, 1141:21
874:15, 883:18,	885:6, 911:8, 911:14, 913:1		1037:2, 1041:10 1041.21, 1044:20	requests [3] -
890:20, 896:10,		rendered [1] - 91	11:21, 1044:2	919:3, 1108:16
927:19, 932:16	$24,956: 12$	rendering [2] -	$95: 4,1104: 2$	require [2] - 835:24,
9, 993:23	12, 994:4	2:18, 912:1	119:24, 1138:6	1107:7
16, 1094:1	4:8, 1020:2	renders [3]-1133:2	representative [2] -	required [5] - 838:4,
6:7, 1144:9	1020:6, 1020:8	34:2, 1134:5	7:13, 894:13	02:20, 1103:2
related [35] - 773:5	1088:19, 1097:14	reneged [1] - 1018:16	representatives [1] -	$117: 19,1140: 5$
817:3, 817:7, 818:7,	1100:9, 1101:9,	renew [1] - 874:14	783:1	requirement [5]
838:20, 842:12,	24:14, 1136:19	rent [1] - 1076:12	represented [12]	955:10, 1015:13,
846:9,	1145:2	re	11:16, 873:2	104:4, 1107:21,
877:24, 881:16,	re	1076:	4:1, 1105:4	1118:6
2:9, 882:22	1094:12, 1136:7	rep [1]-94	05:22, 1110:21,	requirements [2] -
893:17, 896:16,	1143:3, 1145:22	$\text { repeat }[16]-824: 13$	12:17, 1114:8,	$1102: 5,1104: 12$
$902: 11,902: 22,$	$\begin{aligned} & \text { relief [2] - 781:24, } \\ & 1019: 10 \end{aligned}$	1064:17, 1073:20,	1118:8, 1119:5,	$\begin{gathered} \text { requires [10] - 781:8, } \\ \text { 881:22. 1103:21. } \end{gathered}$
923:10, 923:13	rely [4] - 877:20,	$\text { 1103:1, } 1106$		1104:23, 1110:22,
28:19, 935:10,	877:21, 1087:5	06:24, 1108:9,	1:9, 895:2	115:24, 1118:20,
35:13, 937:21,	1145:9	19, 1118:3,	995:3, 1110:7,	1121:4, 1123:11,
940:10, 956:8,	relying [4]	18:20, 1121:13	13:2, 1119:1,	1124:1
$958: 15,985: 2$	$1125: 12,1131: 2$	$\text { 1123:5, } 1130: 11$	1120:13, 1128:11,	Research [7] - 958:6,
1020:21, 1023:16,	1147:19	repeated [3] -	$\begin{aligned} & \text { 1141:22, 1143:9, } \\ & \text { 1148:21 } \end{aligned}$	958:17, 958:19, 962:23. 1011:17.
1092:14, 1105:	re	$\begin{aligned} & 118: 23,1119: 24 \\ & 123: 13 \end{aligned}$	request [32] - 780:1	1029:10, 1063:8
relates [14] - 808:20,	remaining [2] - 932:5,	repeatedly [1]	$781: 23,782: 1,$	research [28] - 821:22,
814:20, 815:18,	1124:2	repeating [9]-1118:6	81:19, 881:22	822:15, 958:9
823:3, 873:20,	remarkable [1] -	1119:14, 1119	81:24, 882:4,	958:11, 958:23
878:1, 882:24,	1054:3	1120:4. 1120:11.	910:2, 910:4, 911:2,	1029:11, 1032:9,

1032:12, 1043:8,	171:7, 1075:13	856:6, 856:15,	revised [3] - 998:17,	row [1]-931:21
1053:2, 105: 16,	Ponse [8] - 848:2	7857:	150.22 1151.3	-931
1056:18, 1056:19,	854:6, 878:6,	857:12, 857:14,	(1)-	
1057:18, 1063:22,	1:12, 880:15,	861:1	word [1] -831:4	
1063:24, 1064:3, 1064:6, 1064:8,	1008:3, 1066:17 1066:22	862:18, 867:13, 868:13, 924:11,	Richard [1] - 973:15 Richer [3] - 1043:2,	royalty 491 773:6,77
1064:11, 1080:14,	responsibilities [2]	924:13, 925:6,		777:6, 779:4,
1081:8, 1082:24,	893:4, 1021:22	925:9, 925:19,	right-hand []]	786:
1083:3, 1083:7,	responsibility [2]	925:24, 930:11	890:14, 892:2,	
1087:20, 1133:4,	783:18, 923:18	930:13, 930:1	933:13, 936:3,	795:24,79
1150:14	responsible [[6] -	930:17, 930:11	976:2, 1142:2,	${ }^{796}$
researchers [3]-	15, 893:6	931:13, 932:11	1148:12	796:13, 796:14,
8991:4,930:7, 10229.9	3:19, 957:17,	932:3, $932: 2$ $933: 4$ 933	rights [13] -838:15	796:17, 799:5
residual [1]-924:1 resolution [51]-	:18, 1021:23	933:4, 933:17,	840:18, 1013:8	800:14, 801:21
resolution [51] 906:15, 906:18,	rest [3] - 875:19, 1074:10, 1110:	933:18, 93 935:21, 936	ripples [1]-1002. River 31 - 108924	
909:9, 914:19,	restaurant $[3]$	936:11	1092:2, 1092:3	824:9
914:23, 915:3,	897:22, 1099:	938:13, 938:17	river[1] -975:11	退:10, 824:77,
915:4, 917:23,	100:2	939:18, 940:3	rivers [2] - 955:7,	824
918:17, 921:12,	restaurants	940:9, 945:13	$965 \cdot 2$	824:21
922:6, 922:13, 922:20, 922:21	804:18, 1076:13 restrained 11.88 -	ues 34	RMR [1] - 1153	830.18
922:23, 960:21,	restrained (1]-880:8 restroom [1] - $82: 6$			
1037:3, 1037:5,	result []] -779:18,	810:19, 811:4	Roger [1] - 112	
1037:6, 1037:12,	838:14, 1110:15	811:18, 811:24	role [f] - 889:5,	855:22, 877:16,
1037:13, 1037:14,	results [3] - 810:22	812:1, 812:2, 812	893:24, 976:23,	877:17, 878:16,
1042:2, 1051:17,	820:17, 935:9	818:5, 818:6,	998:6, 1044	RPM [6] -807:22,
1054:5.5.1084:3, 1090:4 109:7,	788:1, 1150:12	$820: 13,820: 1$ 85617 85	roles [2]-89	807:24, 808:31
1090:	retained [1] 1030:21		951:18	809:8, 928:23, 929:2 RPM, Rese
1092:1, 1095:1,	retired [1] - 1079:15	867:16, 862:1,	rolls [1] - 806:22	
1095:2, 1095:15,	1140:5	865:6, 866:21,	ROM [19] - 1055:	052:17
1100:10, 1100:12,	retrieve [8]-1029:16,		058:5, 1072:	Ele 818
1106:2, 1106:3,	1036:8, 1042:3		, 1072	873:11, 873:14
1108:3, 1108:11,	1112:2, 1112:3,	938:18, 938:22	1073:2, 1073:3	877:3, 881:1, 885:21
1108:13, 1111:7.	1113:12		1073:6, 1073:7	rule 4 - 789
1118:18, 1118:19, 1128:11, 1147:12	retrieved [2]	1043:23, 1074	1073:11. 1073:14,	1119:9, 1 1132:8
resolve 3 [- 787	ng $950-915: 3$	-9, 1082	73:24	rules $[3]-1131:$
992:20, 999:7 resolved 11987	1048:19, 1111:1,	1086:12, 1087:5,		1132:1, 1137:7
resolved [1]-873:13	1111:9, 1120:12	1000.23, 1097:21,	1027:13, 1072	
	return [5] - 849:2	1109:24, 1112:5,	1072:12, 1072	786:16, 88
783:7, 785:23,	937:12, 1031:7	1115:14, 1122:9, 1128:21, 113:20,		111-2
824:12, 825:5,	returned [2] - 918:14,	1136:5, 1136:14,	4:3, 993:1	809-15. 81
885:10, 987:11, 994:13, 9971.	returns [1] 873:7	, 1149:17	1012:7, 1012:	901:20, 952:
1106:6, 1123:19,	revenuel\|l2]-775	851:11, 851:15,	1017:3, 1048:8	967:18, 968:10,
1133:13, 1147:17,		8, 1085:8	099:9, 1151:13	
49:19	778:19, $778: 23$,	5, 1085:22	$\mathrm{R}^{\text {ROONEY }}$ (1)-7	120
respects [1] - 885:21	779:17, 779:22,	1087:1,	root (4)-904:14,	1121:18
854:14, 854:16,	789:22, 808:2	1092:6, 1095:23,		
886:1, 886:3,	810:14, 810:15,	1097:11, 1115:13:	隹hy (1)-821:5	799:12, 830:10,
	14, 82	1116:5, 1122:14,	Rus [$[5]$-1020:18,	¢42:13
:24, 1006	22, 82	1126:17, 1135:11,	020:19, 1021:2,	

952:14, 952:18,	1096:9, 1114:23,			95
972:21, 972:22	1116:13	1	4, 777:2	022:17, 1022:21,
1035:12, 1035:22,	setting [1] - 1052:2	43	7:14, 800:1	1022:23, 1023:7,
1045:6, 1050:10,	settling [1] - 983:14	shoes [2]-928:18	6:14, 866:2	1023:8, 1023:11,
1099:11, 1099:16,	setup [1] - 983:19	928:	9:	1023:14, 1023:21
1100:22, 1111:2,	seven [9]-792:18	shop [3] - 105	90:18, 935:11	1024:5, 1024:9,
1138:19, 1139:4	7:16	1052:18, 1052:1	9:23, 975:17	1024:17, 1024:19,
servers [25] - 904:1,	859:23, 895:11,	shopping [4] - 911:20,	81:10, 1044:22,	1024:24, 1025:13,
909:16, 909:23,	927:15, 971:2,	911:24, 913:14,	058:11, 1112:22,	1025:20, 1026:5,
910:16, 910:17,	1020:24, 1093:3	916:11	113:16, 1113:18,	1027:6, 1027:14,
910:18, 910:19,	seventeen [1] - 797:12	shore [1] - 973:20	1123:21, 1139:8	1048:5, 1048:12,
911:3, 959:21,	several [34] - 793:17	short [4]-833:14	shown [17] - 791:20,	1048:14, 1050:2,
960:1, 1029:18,	799:9, 801:5,	897:2, 924:5, 1141:3	3:22, 812:16	050:9, 1050:17,
1035:16, 1044:23,	806:20, 807:10	Short [1] - 1061:2	890:15, 907:15,	1052:4, 1056:2,
1045:4, 1045:18,	807:22, 808:14	Shorthand [1] -	033:15, 1034:7,	057:7, 1057:11,
1050:7, 1050:12,	809:6, 813:3	1153:8	1035:17, 1044:18,	1057:17, 1058:8,
1054:8, 1060:8,	814:23, 815:10,	shot [2] - 890:13	1049:18, 1049:20,	1137:1
$\begin{aligned} & \text { 1093:10, 1093:14, } \\ & \text { 1094:6, 1139:8, } \end{aligned}$	817:1, 817:5, 822:6,	973:20	$\begin{aligned} & 1065: 5,1072: 8 \\ & 1073: 2,1121: 21 \end{aligned}$	Siggraph [11] - 1070:9, 1070:13
$\begin{aligned} & \text { 1094:6, 1139:8, } \\ & \text { 1139:12 } \end{aligned}$	823:8, 832:24,	show [57] - 779:13,	$\begin{aligned} & 1073: 2,1121: 21 \\ & 1136: 17,1148: 1 \end{aligned}$	$\begin{aligned} & \text { 1070:9, 1070:13, } \\ & \text { 1070:17, 1072:12, } \end{aligned}$
serves [1] - 904:6	869:1, 869:17,	$821: 15,860: 21$	showroom [2] -	1073:14, 1073:18,
$\begin{gathered} \text { service }[3]-910: 20, \\ 910: 23,952: 6 \end{gathered}$	$871: 7,877: 6,881: 4$ 881:6, 916:1	865:12, 868:19, 890:9, 925:22,	$\begin{gathered} 990: 18,990: 19 \\ \text { shows }[20]-771: 3, \end{gathered}$	$\begin{aligned} & \text { 1073:19, 1073:21, } \\ & \text { 1076:24, 1077:8, } \end{aligned}$
910:23, 952:6 services [5] - 910:20,	881:6, 916:1,	$\begin{aligned} & \text { 890:9, 925:22, } \\ & 926: 14.928: 3 \end{aligned}$	shows [20] - 771:3,	1077:12
924:8, 938:14,	$1002: 4,1077:$	926:14, 928:3,	$800: 2$	signed [2] - 977:1
952:7, 1062:24	98:22	1, 947:16	02:5, 817:23	1013:6
session [21] - 792:16,	8:6, 1129:18	48:6, 959.2	19:1, 842:14,	significant [7] -
793:2	1137:2	959:14, 959:15	0:21, 865:7	792:21, 792:24,
829:23, 830:18	several...ye	,	67:8, 869:11	811:12, 821:22
841:14, 842:7	848:13	981:11, 981:12	7:15, 1091:5,	92:11, 1065:16,
842:9, 845:19	SGI [27]	, 983:3,	1091:24, 1107:15,	1065:17
853:8, 855:18,	895:10, 895:11,	18, 1002:	1141:24, 1148:2,	signing [1] - 978:3
859:14, 861:6,	947:18, 948:17	1033:11, 1035:4	1148:1	SIGs [1] - 1022:22
926:20, 927:4,	948:18, 955:19	39:	shuffle [1] - 914	silicon [1] - 894:24
927:6, 927:8, 927:9,	955:20, 955:2	1039:15, 1040:13,	shut [1] - 969:3	Silicon [10] - 895:6,
944:5, 944:7, 944:11	956:4, 956:8,	4, 1041:6	side [26] - 787:1	955:15, 955:17
sessions	迷:	1041:15, 1042:18	5:6, 796:3	7:19, 980:23,
793:19, 794:3	962:11, 962:24	1044:15, 1046:13,	12:20, 814:9	981:2, 990:19,
794:6, 796:20,	20	1051:21	815:11, 890:14,	96:6, 1063:12
796:22, 797:7	966:22, 966:24	52:2, 1053:5,	:17, 892:2	1083:21
797:14, 797:19	967:4, 982:19,	21, 1053:23	09:11, 917:21	similar [14] - 794:22,
797:20, 799:7,	5:14,	56:3, 1071:17	36:3, 947:24,	847:5, 847:9,
799:15, 800:6	6:11, 1009:9	1086:23, 1089:16,	99:11, 1019:22	707:24, 995:13
800:8, 800:9,	1009:20, 1012:	12:15, 1114:7,	076:22, 1077:3,	025:15, 1053:4,
800:22, 800:23	S	$15: 8,1118: 6$,	098:15, 1107:9,	1054:4, 1054:9,
801:1, 801:15,	shaking [1] - 1147:11	1118:21, 1131:13,	1121:16, 1142:2,	1054:14, 1105:7,
801:17, 801:18	shape [1] - 1151:20	$1132: 5,1143: 22$	1148:6, 1148:12,	1107:14, 1109:5
858:24, 861:3,	share [4] - 820:14	showed [25] - 777:1,	1150:24	1126:13
$\begin{aligned} & 877: 16,878: 18 \text {, } \\ & 870 \cdot 1 \end{aligned}$	820:18, 821:2,	$777: 17,777: 18$	Side [2] - 789:15	SIMMONS [15] -
879:4	$821: 10$	777:19, 816:2,	947:13	768:7, 950:1,
set [15] - 802:4, 984:9, 992.9, 992.13	shares [1] - 820:13	859:10, 935:9, 963.24 1002.8	side-bar [5] - 795:6, 796.3, 1019:22	974:18, 974:23, 975:1, 990:6
992:9, 992:13, 994:1, 1047:12	sharing [1] - 820:22	$963: 24,1002: 8$	$\begin{aligned} & 796: 3,1019: 22 \\ & 1076: 22.1077: 3 \end{aligned}$	$\begin{aligned} & 975: 1,990: 6, \\ & 990: 10 \quad 991: 9 \end{aligned}$
994:1, 1047:	sharp [2]-921:11,	1002:13, 1002:14, 1048:20. 1048:22.	1076:22, 1077:3	
1097:17, 1108:17,	922:24	$1052: 19,1052: 22$	side-by-side [1] - 1121:16	014:23, 1017:22,
1110:3, 1138:17,	sharper [3] - 917:22	1052:19, 1052:22,	$\text { sided [1] - } 114$	019:4, 1019:15,
1138:20, 1149:6,	sheet	1071:2, 1073:7,	sides [2] - 769:16,	1020:1
153:14	$800: 1,800: 7$	1075:21, 1091:15,	1151:6	Simmons [3] - 949:20,
sets [6]-994:	shipment [1] -	1119:21, 1122:5,	SIG [1] - 1022:20	950:6, 1000:2
1046:7, 1084:10,	1026:21	1123:3, 1140:2	34] -	simple [6]-837:17,

38:11, 838:16	8			
868:1, 940:7, 1114:1	824	835:4, 843:15,	106	1085:18, 1097:9,
simplicity [1] - 907:17	856:12, 857:1	848:5	sometime [1] - 933:22	0, 1097:14,
simplification [1]	861:14, 877:15	848:7, 856:8	sometimes [14] -	1097:16, 1109:14,
946:16	9	9:13,	813:15, 837:13	1112:6, 1114:15,
simplifying [1] - 908:7	907:24, 940:16	871:24, 872:17,	837:14, 837:24	1114:17, 1114:24,
simp	80:1		38:	16:4, 1116:9
1101:17, 1117:10,	0:5, 1080:	873:19, 874:13	838:13, 955:17	1122:9, 1122:13
1121:13, 1123:13,	1083:9, 1083:12	$875: 14,875: 20$	958:20, 980:3,	sources [6] - 1087:9,
1124:3	10	6:17	982:14, 982:16	93:8, 1134:22
simulate [1] - 1092:22	99:12, 1090:9	877:2, 881:2	989:7, 1081:12	1138:17, 1138:21
simulatio	1092:9, 1096:5,	885:22, 886:9,	somewhat [1] -	1139:10
950:22,	1096:20, 1098:15,	887:1, 887:11	1124:5	South [3] - 1050:14,
954:21, 955:11	1101:3, 1103:3,	$40: 11$	somewhere [2] -	1060:9, 1060:10
957:1, 960:4, 962:7,	1116:3, 1121:15	945:19, 947:4	892:9, 973:8	Soviet [1] - 970:4
966:9	1125:8, 1127:1,	947:20, 949:7	Sony [1] - 968:13	space [8] - 804:9,
simulat	1137:14, 1140:24	949:13, 992:15,	soon [3] - 804:19,	890:15, 973:16
957:1	Slide [1] - 1130:6	$93: 14,995: 23$ 97:7, 997:11,	$991: 23,1018: 18$	87:23, 1092:14,
simulator [5] - 955:7,	Slide [1] - 1130:6 slow [2] - 916:6, 9	97:11,	sooner [3]-920:6,	$\begin{aligned} & \text { 1092:21, 1092:23, } \\ & 1138: 6 \end{aligned}$
$960: 4,1037: 22$	small [8]-857:19,	998:10, 998:1	sophisticated	space-related [1]
sim	905:10, 905:12,	999:14, 999:20,	1063:20, 1064:11	1092:14
$955: 16,957: 24$	909:10, 909:12,	1020:17, 1027:20 1028.2 1028:8	sorry [33] - 778:8,	spaced [1] - 886:8
simultaneously [1] -	934:17, 976:12,	$\begin{aligned} & 1028: 2,1028: 8 \\ & 1060: 24,1061: 5 \end{aligned}$	$787: 23,790: 8,$	$\begin{aligned} & \text { Spacial [2] - 960:11, } \\ & 960: 15 \end{aligned}$
	smalle	1078:3		
978:21, 1007:17	1091:20, 1091:23,	soccer [2] - 971:11	821:17, 826:12	spatially [5] - 1093:13,
Sioux [4]-1035:23	1095:1, 1098:20,	971:12	832:17, 833:22,	1105:1, 1138:17,
10	1102:21, 1103:17,	Social [1] - 1080:1	837:19, 848:10,	1138:20, 1139:10
1060:10	03:23, 1103:24	$\begin{array}{r} \text { Society [3] - 1082:1 } \\ 1082: 13,1082: 14 \end{array}$	900:17, 917:4,	speaking [6] - 840:19,
sisters [1] - 971:6 sit [6]-872•13	06:11, 1107:20	society [1] - 1022:	$17: 14,1051:$	857:20, 896:13,
$\begin{array}{r} \text { sit }[6]-872: \\ 874: 21,8 \end{array}$	1113:3, 1115:23,	software [31] - 804:1	1062:7, 1064:17,	$1025: 7$
894:7, 1060:20,	116:1, 1117:3	883:8,	1065:3, 1066:2	SPEARS [22] - 767:22,
1150:19	1141:21		1067:1, 1068:3,	885:13, 1027:24,
site [3]-937:12,	$\text { smart [2] - } 967$	$6: 1,952: 7,954: 6$	107:20, 1071:2	1060:14, 1061:6
$\begin{array}{r} 102 \\ \text { sites } \end{array}$	1113:10	$6: 4,956: 6$	1093:3, 1100:5,	068:7, 1074:11,
sitting [3] - 812:19	Smith [1] - 1019:1	2:19, 963:1	1106:23, 1135:16	074:16, 1074:19,
812:20, 1026:10	smooth [2] - 923:6	963:2, 963:4, 966:22, 966•23	sort [9] - 904:6,	1075:4, 1075:7,
situation [3] - 805:16,		6:22, 966:23	938:16, 939:14,	1075:8, 1075:17,
$837: 10,927: 23$	smoot Snyder	980:4, 980:6, 982:7,	50:18, 957:3	
$\begin{gathered} \operatorname{six}[4]-792: 17, \\ 076 \cdot 10 \quad 1092 \cdot 9 \end{gathered}$	782:10, 783:23	$35: 3,985: 2$	$001: 8,1123: 2$	1151:15
1150:24	$795: 5,826: 20$	6:2, 1015:14	sorts [2] - 860:9	1152:8
size [2]	$876: 12,887: 10$	1015:15, 1076:6,	$926: 13$	special [5] - 964:2
981:24	995:7, 995:22,	1115:3, 1115:13 Software [1] - 1067:	sought [1] - 879:14	1022:19, 1022:20,
skill		sold [5] - 858:6, 858:؛	sounds [1] - 854:11	
1132:20, 1150:5	\mathbf{S}	863:4, 924:9, 976:17	ource [39]-817:14,	specialized [1] - 884:16
skip [1] - 1113:13	77	sole [3] - 889:7		
$\begin{aligned} & \text { skipped [2] - 1113:23, } \\ & 1114: 13 \end{aligned}$	$778: 7,782: 11$	$889: 10,893: 5$	$\begin{aligned} & 942: 16,942: 20 \\ & 942: 23,943: 8 \end{aligned}$	$\begin{aligned} & \text { specializes [1] - } \\ & 897: 12 \end{aligned}$
skipping [1] - 781:16	$783: 24,785: 4,$	solution [4]-806:24	$943: 11,943: 14$	specific [17] - 778:17,
skips [2]-1114:19,		1147:	$5: 21,946: 3,$	$\begin{aligned} & 789: 22,825: 14, \\ & 827: 14.840: 24 \end{aligned}$
1115:22 1007:12	791:22, 795:21,	$\text { solve }[4]-951: 17$		$854 \cdot 6,861 \cdot 6$
Skyline [1] - 1067:12	819:4, 819:7,	958:4, 1129:21,	$\begin{aligned} & 985: 1,985: 2, \\ & 993: 21,1031: 13, \end{aligned}$	$\begin{aligned} & \text { 854:6, 861:6, } \\ & \text { 862:13, 872:22, } \end{aligned}$
$\begin{gathered} \text { slide [43] - 789:5, } \\ 790: 4,790: 6 . \end{gathered}$	819:23, 820:3,	1130:5	1051:2, 1051:5,	877:14, 884:9,
810:16, 811:9,	825:8, 825:17,	someone [6] - 820:14	051:18, 1051:21,	941:13, 1025:6,
811:19, 812:6,	825:24, 826:21,	5:22, 9	051:23, 1052:3,	1088:18, 1094:14,

992:1, 992:17,	three [30] - $999: 4$,	title []] - 893:23,	909:2, 934:9,	transformed
993:1, 993:3,	80:11, 823:12,	37:16, 1083:12	.15,970.2.	956:23
994:15.994:20,	865:13, 932:6, S64, 96:15,	titled [1] - 1081:21	990:2, 1041:7,	transformers [2]-
\%:14, 999:5,	964:7, 965:15,	titles [2] - 10	1044:16, 1045:5,	
997:10, 997:12,	77:18, 1038		1:17, 1098	translated (11) -
997:22, 998:14,	1038:11, 1045:77	today 3 [3] - 851:12,	38:6,	1047:20
999:16, 999:22,	1045:8, 1046:15,	859:16, 861:1,	881:19, 1124:3	
1000:1, 1015:1,	1046:24, 1072: 12	62:24, 863:1,		971:16, 1068:20
1016:10, 1016:13,	1077:11, 1093:10,	63:7, 863:13	n(1) $8991: 2$	taver
1017:24, 1019:19,	1095:19, 1096:16,	864:21, 897:23	total [20] - 792:14,	
1019:23, 1020:5,	1109:15, 1113:18,	907:15, 924:15,	797:14, 799:6,	19:2, 1100:19,
1020:14, 1020:16,	1116:13, 1124:2,	934:19, 953:4,	801:5, 811:18,	1101:21, 1110:11
1028:1, 1028:7,	1133:3, 1133:8,	953:15, 1017:6,	811:24, 817:24,	1111:4, 1113:10
1028:21, 1033:22,	1133:12, 1149:11	1026:10, 1029:6,	819:1, 819:2,	-
1060:16, 1060:20,	three-dimensional 44	1070:6, 1075:23,	859:24, 877:12,	1110:8,
1061:3, 1061:7,	- 1037:18, 1038:1,	1076:9, 1084:8,	879:5, 903:8,	120
1061:11, 10688:5,	1038:11, 1046:24	1087:7, 1087:24,	906:23, 933:3,	traversed $[6]$ -
1071:24, 1074:8,	three-legged [1] -	1088:4, 1125:24,		118:23, 919:5
1074:13, 1074:17, 1074:21, 1075:2, a	823:12	1126:11, 1128:15,	936:12, 936:17	19:7, 919:14,
1074:21, 1075:2, 1075:6, 1076:19,	three-sided [1]	1130:2, 1136:3,	totaled (11) -933:14	21
1076:23, 1077:4,	threshold (1) - 111	1147:1, 1149:8	touch (11) -984:5	
1077:9, 1077:13,	threshold	toget	tourin	
1077:15, 1077:16,	988:19	812:23, 812:24,	,	
1078.1, 1078:13, 1078:15. 1079.1	throughout 44 -	960:14, 982:21,	touting [1] - 1063:11	913:7
1078:15, 1079:1,	879:11, 943:1,	982:22, 1003:17	toward [1] - 1037:17	913:2
1150:19, 1151:14,	1049:8, 1050:7 tie $[1]-1126: 1$	1009:17, 1009:20, 1016:17, 1027:17,	${ }_{\text {towards }[2]-915}^{\text {925:5 }}$	$1110: 2,1$ $1120: 16$
1151:22, 1152:2, 1152: $1152: 9$	tied [1]-880:21	1031:24, 1116:10,	track [10] - 785	eatis
(1152:6, 1152:9	tight [f] - 846:4,	1126:1, 1136:13, 1140,15, 1149:		tree 884$]$-895:20,
theater $[1]$ - $1023: 3$ themselves $[2]$	846:18, 846:19,	1140:15, 1149:6,	930:16, 934:3,	04:5, 904:6,
themselves [2] 840:16, 971:14	847:7, 1004:22	1151:3	934:5, 935:2, 937:7,	904:10, 904:12,
theory (3]-771:11	tile 69 - $10366: 17$	127:6, 1127	$\begin{gathered} 937: 11,944: 2 \\ \text { tracks [5] }-927: 4 \end{gathered}$	904:18, 904:22.
777:4,779:2	1037:11, 1046:7,		943:23, 944:7,	5:2, 905:5,
therefore 5 [5] -880:3, 1112:23, 1117	1100:14, 1105:16,	Smorrow [6]-	1022:24, 1023:5	㖪:5111, 905:14,
1112:23, 1117:4, 1124:12, 1124:13	1110:4 tiles [20] - 959:10	886:15, 998:24, 1150:12, $1150: 15$,		905:19, 906:13,
they'vi(1) - 774:10,	1036:12, 1036:17	1151:4, 1152:10	tradeoffs $[2]$-922:1	9077:14, 907:16,
	1036:20, 1036:21	tonight (11-999:21	922:19	907:22, 908:8,
807:11, 822:5, 854:22, 878:18	1036:23, 1036:22	took [161-786:14,	traffic (4)-809:5,	909
thinking (4) -808:9,	1037:8, 1037:9, 1098:2, 1099:4	793:1, 854.5,	898:20, 917: train 11 -970:24	
871:13, 890:5,	1100:21, 1105:12	963:14, 967:15,		:5,
	111:2, 1112:15,	993:6, 1010:10,	training [2] - 957:3	16,
third (8]-793:1, 823:21, 870:4,	1112:21, 1113:14,	1014:5, 1015:4,	960:7	911:12, 911:16,
823:21, 870:4 882:9, 952:16	1113:23, 1149:5, $1149: 6$	1031:22, 1043:2, 1061:21, 1075:15	Training [1] - 958:6 trains [1] - 970:23	911:23, 912:9,
1053:23, 1085:10,	Tim [1] -878:22	tool 212 -897:18,	transactions [2] -	,
${ }_{\text {che }}^{11388.22}$ thought [2]-	timeline ${ }^{\text {a } 3 \text { - } 969: 21 .}$		1076:7, 1076:10	22,
thoughts [2] 1043:24, 1046:1	$1136: 13,1136: 18$ timelines $[1]-893: 9$ timelines [1] - 893:9	Toolbar [3] - 818:7,	transcript [8] - 991	947:16, 948:5, 948:8, 948:12,
thousand [7] -808	timing [3] - 806:17.	Toolbars [1] -815:	994:16, 1067.21, 1067:24, 1068:1,	1098:7, 1098:17,
809:9, 903:15, $903: 16,903: 17$,	841:6, 978:2	tools [1] -963:24	1074:2, 1074:7,	1098:18, 1098:20,
928:24, 957:22	TIMOTHY [2] - 767:13,		53:11	
thousands $[5]-$ $827 \cdot 20.946 \cdot 18$,	tiny ${ }^{\text {[5] - 930 }}$-23,	810:19, 818:20,		100:14, 1100:16,
827:20, 946:18,	8, 961:6,	56:20	:3, 1146:22,	1100:20, 1100:21,
946:19, 957:21	1056:21	905:6, 908:24,		1101:1, 1101:11,

110	1005:10	96	1064:4, 1064:7	
1106:4, 1107:1,	truth [2] - 953:18,	3, 966:13	17, 1104:5,	790:2, 794:9,
1107:9, 1107:13	1067:1	982:14, 991:21	106:10, 1117:15,	797:15, 800:17,
1110:2, 1110:9,	$\boldsymbol{t r y}$ [16]-773:15	99:10	2, 1119:3,	800:20, 803:16,
1112:24, 1113:19,	775:22, 788:2	1008:18, 1031:24,	1149:22	805:23, 806:8,
1113:20, 1114:3,	2, 813:12	1043:24, 1047:1,	underlined [1] -	808:20, 809:1,
1114:7, 1115:7,	831:3, 832:2, 876:9	1053:9, 1055:3	1145:15	813:17, 816:6,
1119:8, 1119:15	20, 930:24	1072:18, 1081:21	underscore [1]	818:14, 819:17,
1119:22, 1120:10,	46:20, 999:2	1081:23, 1084:10,	1054:22	819:19, 822:8,
1148:1	36:6, 1036:8	1092:19, 1093:18,	understood [7]	831:23, 835:14,
trees [5] - 892:15,	1126:14, 1130:1	094:13, 1094:15	775:8, 775:16	841:8, 843:16,
905:24, 912:8,	trying [12] - 81	996:8, 1100:9,	846:15, 854:8	846:1, 848:5, 865:7,
940:21, 1101:6	822:24, 846:22,	1101:16, 1102:12	980:7, 1074:19,	865:12, 866:7,
tremendous [1] -	860:7, 866:7, 868:1,	1106:1, 1108:5,	1109:13	867:8, 869:1, 869:2,
926:19	914:15, 919:23,	1117:16, 1118:24,	unexpected [1] -	869:4, 869:6, 869:12, 869•21
trial [28] - 780:6 780:24, 782:1	926:12, 988:24 1005:14, 1092	$5: 9,1126: 8$	1036:4 unfortunate	872:19, 874:21,
787:9, 787:12,	TUNNELL [1] - 768:4	1133:15, 1133:18,	$778: 14$	877:3, 879:5, 890:4,
787:14, 794:16,	turn [23]-790:10	1141:4	unfortunately [5] -	891:12, 893:8,
799:18, 803:17,	798:4, 798:13	two-dimensional [1] -	6:7, 936:3, 937:3,	903:23, 908:21,
805:24, 834:9,	:18, 799:17	1047:	1033:8, 1039:2	911:24, 930:21,
937:18, 941:14,	799:23, 819:14	two-volume [1] -	Union [1] - 970:	930:24, 933:12,
943:1, 981:23,	2:6, 856:8	1081:2	unique [1] - 805:1	933:23, 934:7,
1008:23, 1010:	56:10, 912:5	type [13] - 781:24	unit [8] - 808:7, 830:4,	934:9, 936:8,
1083:22, 1085:21,	17:9, 1017:10,	795:1, 815:20	830:8, 830:10	937:14, 937:15,
1085:24, 1086:6	14, 1029:7	:1, 904:11	0:20, 895:1	947:15, 948:5,
1094:19, 1095:19	039:18, 1069:5	930:23, 934:8	895:15, 901:2	957:5, 962:15,
1096:15, 1124:15,	093:5, 1098:4	934:24, 957:4	UNITED [1] - 767:	963:17, 965:3,
1131:8, 1146:19,	02:1, 1105:17	964:13, 997:3	United [7] - 767:14,	965:7, 969:20,
1147:5	1130:6, 1134:19	1052:17, 1053:	818:3, 819:12	973:20, 974:24,
Trial [15] - 767:3,	turning [2] - 929:7	types [5] - 865:13	$84: 24,902: 2$	975:8, 976:1,
790:11, 790:21	1094:16	893:15, 1011:10	936:15, 1089:1	976:11, 983:14,
791:3, 791:20,	turns [3] - 890:23	1071:10, 1097:4	units [1] - 973:19	984:9, 984:12
797:22, 798:5	965:7, 984:17	typical [5] - 825:12	Universal [1] - 984:11	985:12, 989:14,
798:14, 798:19,	TV [3] - 867:8, 926:17	825:18, 825:22,	universally [2] -	989:16, 989:21, $\text { 990:1, } 991: 8 \text {, }$
816:6, 818:14,	$1048: 2$	826:8, 878:2	889:17, 979:22	990:1, 991:8, 992.13, 994.24
819:15, 819:17,	twenty [13] - 782:2	typically [1] - 891:2	University [13] -	$\begin{aligned} & 992: 13,994: 24, \\ & 996: 9,998: 19, \end{aligned}$
869:21, 875:10 triangle [1] - 1038	792:18, 797:12,	$\begin{aligned} & \text { U.S [6] - 800:6, 800:9, } \\ & \text { 800:22 801:8. } \end{aligned}$	896:2, 896:3,	$\begin{aligned} & 996: 9,998: 19 \\ & \text { 1001:21, 1003: } \end{aligned}$
triangles [2] - 1038:8,	15:8	$859: 3,1035: 22$	$35: 20,1039: 1$	1003:4, 1005:22,
1038:14	15:16, 1015:21	U.S.C [2] - 1131:14	063:6, 1079:16	$1015: 24,1025: 11$ 1031:15, 1035:23,
triangular [1] -	15:23, 1015:24	1132:6	1079:22, 1080:23,	1031:15, 1035:23,
1149:10	1080:22, 1113:21	UC [4] - 1079:21	1081:4, 1081:5,	1036:6, 1039:8, 1042:20, 1046:2,
tried [3] - 773:3, 885:2.909:19	twenty-five [1] -	$1080: 8,1080: 12$	1129:5	$\begin{aligned} & \text { 1042:20, 1046:2, } \\ & \text { 1052:2, 1052:19, } \end{aligned}$
885:2, 909:19	1113:21	1080:21	unless [6] - 774:19,	1053:7, 1053:10,
$\begin{aligned} & \text { troll [2] - } 992: 8 \\ & 995: 13 \end{aligned}$	$\begin{aligned} & \text { twenty-year [1] } \\ & \text { 1015:5 } \end{aligned}$	$\begin{aligned} & \text { UFO [2] - } 963: 19 \\ & 963: 21 \end{aligned}$	834:17, 978:10,	1055:22, 1075:4,
true [10]-854:12,	twice [1] - 981:24	UK [1] - 1082:12	1142:9	1080:4, 1081:20,
857:17, 868:10,	two [60]-770:3,	ultimate [1] - 1097:19	unpaid [1] - 1079:23	$\begin{aligned} & \text { 1111:22, 1112:16, } \\ & 1112: 19,1112: 20, \end{aligned}$
971:20, 996:13,	773:22, 774:4,	umbrella [1] - 1043:7	unsolicited [1] -	$\begin{aligned} & \text { 1112:19, 1112:20, } \\ & \text { 1129:2, 1141:1, } \end{aligned}$
1012:15, 1067:4,	782:12, 798:21,	unable [3] - 1034:6,	841:22	$1151: 3$
1153:10	$816: 12,853: 15$		unsupported [1] - 1015:14	up-to-date [1] -
trumpet [2]-983:9,	881:8, 882:21,	774:3, 786:19,	1015:14 unusual [2] - 781:11,	$835: 14$
983:11	884:13, 896:12,	788:6, 829:7, 829:8,	$948: 2$	upgrade [1] - 944:2 upper [3] - 824:4
trumpets [1] - 983:8	$905: 7,905: 8,$ $906: 18,930: 12$	872:21, 877:3,	up [115] - 771:8,	$\begin{gathered} \text { upper }[3]-824: 4, \\ 892: 1,976: 1 \end{gathered}$
truncate [3]-786:20,	906:18, 930:12,	884:4, 884:24,	$780: 24,782: 5$	ups [1] - 868:20
788:1, 872:9	931:6, 931:7,	885:5, 952:1, 970:4	784:11, 785:22,	unside [1] - 904:16
trusted [1] - 972:9	$\begin{aligned} & 931: 15,940: 9, \\ & 947: 10.948: 16 \end{aligned}$	995:9, 1017:5,	786:22, 787:6,	URL [1] - 959:5
	947:10, 948:16,	1041:17, 1064:1, s Reporting	$\begin{aligned} & 787 \cdot 7,788: 2, \\ & \text { vice } \end{aligned}$	

US	858:23, 8	1135:4, 113	1035:18, 1036:1,	10
822:10, 824:2,	$859: 24,883: 14$	6:1	1036:6, 1036:22,	viewer [1] - 858:
1038:3, 1045:8,	898:18, 910:19	varying [1] - 1015:2	1037:4, 1037:7,	Viewer.com [1] -
1082:8	931:12, 937:11	vast [5] - 898:9, 908:2,	1037:16, 1038:21,	976:6
usage [8] - 791:9,	944:23, 1054:5,	911:13, 913:1	1039:2, 1039:21,	viewing [1] - 1071:13
791:14, 799:14,	1054:7, 1096:10,	1129:	1040:2, 1047:23	viewpoint [2] -
866:22, 879:1,	1099:3, 1100:18,	Vautrin [1] - 1082:15	1048:21, 1048:22,	1090:5, 1100:14
879:2, 926:20	1100:24, 1101:1,	vendor [6] - 1026:3,	1049:1, 1049:18,	views [3] - 804:9,
useful [4]-805:3,	1101:15, 1117:11,	1026:7, 1026:11,	1049:20, 1055:19,	844:22, 845:15
889:17, 979:23,	1129:20	1026:19, 1026:23	058:23, 1059:18,	violation [1] - 878:11
1000:14	USGS [1] - 1045:6	vendors [1] - 1026:15	1059:20, 1065:5,	Virginia [1] - 1011:17
user [44]-792:24,	utility [1] - 897:24	venture [1] - 967:19	1065:8, 1065:12,	virtual [7] - 849:1,
799:1, 804:21,	utilized [2] - 1036:24,	venue [1] - 982:17	1065:16, 1065:19,	849:17, 890:5,
805:17, 815:3,	1129:24	verdict [4] - 877:4,	1069:9, 1069:14,	950:14, 971:16,
826:9, 826:12,	uTube [1] - 816:13	881:4, 885:7, 885:16	1069:16, 1071:2,	973:17, 1094:3
826:13, 859:21,	vacation [1] - 890:5	version [30] - 806:12,	1126:10, 1135:3,	Vision [8] - 1054:22,
860:7, 860:15, 863:5, 873:21	valid [9] - 813:9, 813:11, 844.23	858:18, 859:5,	1141:1, 1141:4,	1075:11, 1125:20,
863:5, 873:21, 874:6, 874:15,	$\begin{aligned} & 813: 11,844: 23, \\ & 845: 11,847: 3, \end{aligned}$	859:6, 860:4,	141:9, 1143:17,	1126:8, 1133:16,
878:23, 879:20,	$: 11,870: 18$:16	1144:3, 1145:3,	$\begin{aligned} & \text { 1134:1, 1134:3, } \\ & 1134: 14 \end{aligned}$
902:19, 902:22,	870:19, 1126:19	866:2, 866:4,	1149:13	vision [4] - 806:20,
919:24, 925:22,	validity [3] - 828:15,	6:10, 890:19	videos [2] - 891:12,	50:18, 962:19,
926:24, 927:22,	846:9, 846:12	894:2, 899:24,	1040:9	1031:23
937:7, 937:9, 939:8,	Valley [2] - 967:19,	$900: 1,900: 8,900: 9$	videotape [5] -	visit [6] - 892:20,
972:1, 979:6, 1036.2, 1036.3	1063:12	907:9, 924:6, 963:1,	1034:20, 1068:12, 1068:14, 1068:22	911:7, 937:13,
1036:2, 1036:3 1054:6, 1084:2	valuable [11] - 837:4, 837.9, 837•16	985:21, 985:23,	1069:21	991:1, 1002:20,
		998:17, 998:21,		1110:4
1104:18, 1111:8,	837:19, 837:20	998:22, 1049:22,	$1010: 1$	visited [2] - 914:4,
1117:13, 1138:10,	:20	$1128: 1$	View [2] - 804:5,	iting [1] - 913:10
1140:6, 1145:1,	847:20	Version [1] - 900:9	981:17	visual [2] - 1033:13,
1145:15, 1149:4	value [15] - 771:3	versions [10] - 862:21,	view [43]-770:4,	1040:1
user's [13] - 887:17,	771:8, 771:14	865:24, 868:15,	0:11, 775:6,	Visualization [1] -
912:11, 926:13,	775:12, 776:8	9:8, 901:5,	775:9, 820:17	986:2
961:15, 1090:4,	779:7, 815:12	$1: 17,921: 20$	830:10, 900:24,	visualization [28] -
1093:11, 1094:3,	815:14, 816:21	1055:15, 1101:23,	911:9, 911:14,	895:9, 954:4,
1099:5, 1099:10,	817:11, 849:23,	1111:1	912:24, 913:11,	954:22, 956:24,
1105:21, 1106:8,	850:6, 850:10,	versus [4]-815:19,	913:13, 913:17,	957:13, 958:12,
1112:16, 1119:20	939:23, 945:9	859:6, 859:20,	913:19, 914:23,	959:24, 961:18,
users [40] - 779:18, $788: 21.791: 9$	variability [1] -	1067:12	915:4, 918:18, 921:7, 933:23	1013:13, 1029:15,
$791: 14,793: 18$	1071:12	VHS [1] - 1035:		1030:5, 1030:11,
804:8, 805:11	varied [1] - 858:12	vibrate [1] - 970:17	$995: 7,1036: 1$	1031:21, 1031:23,
805:19, 807:3,	varies [1] - 797:11	Vice [1] - 982:12		032:4, 1032:9,
$860: 18,866: 23$	variety [4]-802:14,	Vice-president [1] -	$\begin{aligned} & \text { 036:18, 1036:21, } \\ & \text { 038:1, 1038:2, } \end{aligned}$	1042:6, 1042:12,
883:10, 883:13,	836:16, 864:3	982:1		042:14, 1043:9,
898:22, 899:8,		102	$47: 5,1047: 21$	044:12, 1045:1,
899:12, 914:15,	$775: 1$	1143:23	082:16, 1092:18,	1046:8, 1070:12,
925:2, 925:3, 925:5,	797:9, 832:20	video [64] - 892:5,	1094:2, 1094:4,	1130:19
926:6, 926:9, 927:7,	$843: 12,889: 19$	924:22, 963:15,	1094:8, 1108:15,	visualizations [1] -
928:3, 928:10	895:19, 1045:4	974:14, 974:24,	08:17, 1134:4	1030:6
$937: 11,9$	1046:17, 1046:22,	975:4, 981:5	$140: 2,110$	visualizing [3] -
	1047:10, 1056:16,	996:10, 997:23,		959:20, 1126:23,
961:16, 972:13,	1058:5, 1059:6 1080:14, 1085:	10:20	1003:20	1138:10
972:16, 972:20,			Viewer [11] - 971:19,	[1]
1018:19	1090:20, 1093:1,	1034:3, 1034:11,	971:22, 972:5,	1017:4
uses [26] - 773:7,	1097:12, 1109:14	1034:13, 1034:17	972:12, 973:3,	vocabulary [1] -
793:1, 793:23,	1112:1, 1112:15,	1034:22, 1035:6,	974:3, 974:16,	1037:4
820:14, 826:16,	1129:16, 1130:22,	$1035: 10 \quad 1035: 1$	979:3, 1013:12,	volume [8] - 809:4,

